Header

UZH-Logo

Maintenance Infos

A theoretical framework for combining techniques that probe the link between galaxies and dark matter


Leauthaud, A; Tinker, J; Behroozi, P S; Busha, M T; Wechsler, R H (2011). A theoretical framework for combining techniques that probe the link between galaxies and dark matter. Astrophysical Journal, 738(1):45.

Abstract

We develop a theoretical framework that combines measurements of galaxy-galaxy lensing, galaxy clustering, and the galaxy stellar mass function in a self-consistent manner. While considerable effort has been invested in exploring each of these probes individually, attempts to combine them are still in their infancy. These combinations have the potential to elucidate the galaxy-dark matter connection and the galaxy formation physics responsible for it, as well as to constrain cosmological parameters and to test the nature of gravity. In this paper, we focus on a theoretical model that describes the galaxy-dark matter connection based on standard halo occupation distribution techniques. Several key modifications enable us to extract additional parameters that determine the stellar-to-halo mass relation and to simultaneously fit data from multiple probes while allowing for independent binning schemes for each probe. We construct mock catalogs from numerical simulations to investigate the effects of sample variance and covariance for each probe. Finally, we analyze how trends in each of the three observables impact the derived parameters of the model. In particular, we investigate various features of the observed galaxy stellar mass function (low-mass slope, "plateau," knee, and high-mass cutoff) and show how each feature is related to the underlying relationship between stellar and halo mass. We demonstrate that the observed "plateau" feature in the stellar mass function at M * ~ 2 × 1010 M sun is due to the transition that occurs in the stellar-to-halo mass relation at Mh ~ 1012 M sun from a low-mass power-law regime to a sub-exponential function at higher stellar mass.

Abstract

We develop a theoretical framework that combines measurements of galaxy-galaxy lensing, galaxy clustering, and the galaxy stellar mass function in a self-consistent manner. While considerable effort has been invested in exploring each of these probes individually, attempts to combine them are still in their infancy. These combinations have the potential to elucidate the galaxy-dark matter connection and the galaxy formation physics responsible for it, as well as to constrain cosmological parameters and to test the nature of gravity. In this paper, we focus on a theoretical model that describes the galaxy-dark matter connection based on standard halo occupation distribution techniques. Several key modifications enable us to extract additional parameters that determine the stellar-to-halo mass relation and to simultaneously fit data from multiple probes while allowing for independent binning schemes for each probe. We construct mock catalogs from numerical simulations to investigate the effects of sample variance and covariance for each probe. Finally, we analyze how trends in each of the three observables impact the derived parameters of the model. In particular, we investigate various features of the observed galaxy stellar mass function (low-mass slope, "plateau," knee, and high-mass cutoff) and show how each feature is related to the underlying relationship between stellar and halo mass. We demonstrate that the observed "plateau" feature in the stellar mass function at M * ~ 2 × 1010 M sun is due to the transition that occurs in the stellar-to-halo mass relation at Mh ~ 1012 M sun from a low-mass power-law regime to a sub-exponential function at higher stellar mass.

Statistics

Citations

Dimensions.ai Metrics
113 citations in Web of Science®
113 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

155 downloads since deposited on 18 Feb 2012
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Astronomy and Astrophysics
Physical Sciences > Space and Planetary Science
Language:English
Date:September 2011
Deposited On:18 Feb 2012 09:58
Last Modified:23 Jan 2022 20:17
Publisher:IOP Publishing
ISSN:0004-637X (P) 1538-4357 (E)
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1088/0004-637X/738/1/45
Related URLs:http://arxiv.org/abs/1103.2077
  • Content: Accepted Version
  • Description: Version 2
  • Content: Accepted Version
  • Description: Version 1