Header

UZH-Logo

Maintenance Infos

A fast wavelet-based reconstruction method for magnetic resonance imaging


Guerquin-Kern, M; Häberlin, M; Pruessmann, K P; Unser, M (2011). A fast wavelet-based reconstruction method for magnetic resonance imaging. IEEE Transactions on Medical Imaging, 30(9):1649-1660.

Abstract

In this work, we exploit the fact that wavelets can represent magnetic resonance images well, with relatively few coefficients. We use this property to improve magnetic resonance imaging (MRI) reconstructions from undersampled data with arbitrary k-space trajectories. Reconstruction is posed as an optimization problem that could be solved with the iterative shrinkage/thresholding algorithm (ISTA) which, unfortunately, converges slowly. To make the approach more practical, we propose a variant that combines recent improvements in convex optimization and that can be tuned to a given specific k-space trajectory. We present a mathematical analysis that explains the performance of the algorithms. Using simulated and in vivo data, we show that our nonlinear method is fast, as it accelerates ISTA by almost two orders of magnitude. We also show that it remains competitive with TV regularization in terms of image quality.

Abstract

In this work, we exploit the fact that wavelets can represent magnetic resonance images well, with relatively few coefficients. We use this property to improve magnetic resonance imaging (MRI) reconstructions from undersampled data with arbitrary k-space trajectories. Reconstruction is posed as an optimization problem that could be solved with the iterative shrinkage/thresholding algorithm (ISTA) which, unfortunately, converges slowly. To make the approach more practical, we propose a variant that combines recent improvements in convex optimization and that can be tuned to a given specific k-space trajectory. We present a mathematical analysis that explains the performance of the algorithms. Using simulated and in vivo data, we show that our nonlinear method is fast, as it accelerates ISTA by almost two orders of magnitude. We also show that it remains competitive with TV regularization in terms of image quality.

Statistics

Citations

Dimensions.ai Metrics
103 citations in Web of Science®
115 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 24 Jan 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Scopus Subject Areas:Physical Sciences > Software
Health Sciences > Radiological and Ultrasound Technology
Physical Sciences > Computer Science Applications
Physical Sciences > Electrical and Electronic Engineering
Language:English
Date:2011
Deposited On:24 Jan 2012 15:33
Last Modified:23 Jan 2022 20:31
Publisher:IEEE
ISSN:0278-0062
OA Status:Closed
Publisher DOI:https://doi.org/10.1109/TMI.2011.2140121
PubMed ID:21478074