Abstract
Dynamic gearing of molecular spur gears, the most common type of mechanical gear, is elucidated. Molecular design and conformational analysis show that derivatives of 4,4-bis(triptycen-9-ylethynyl)bibenzimidazole represent suitable constructs to investigate gearing behavior of collateral triptycene (Tp) groups. To test this design, DFT calculations (B97-D/Def2-TZVP) were employed and the results suggest that these molecules undergo geared rotation preferentially to gear slippage. Synthesis of derivatives was carried out, providing a series of molecular spur gears, including the first desymmetrized spur gear molecules, which were subsequently subjected to stereochemical analysis.