Header

UZH-Logo

Maintenance Infos

Cerivastatin triggers tumor-specific apoptosis with higher efficacy than lovastatin


Wong, W Wei-Lynn; Tan, M M; Xia, Z; Dimitroualakos, J; Minden, M; Penn, L Z (2001). Cerivastatin triggers tumor-specific apoptosis with higher efficacy than lovastatin. Clinical Cancer Research, 7(7):2067-2075.

Abstract

The statin family of drugs inhibits 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, the rate-limiting enzyme of the mevalonate pathway, and is used clinically as a safe and effective approach in the control of hypercholesterolemia. We have shown previously (Dimitroulakos, J., Nohynek, D., Backway, K. L., Hedley, D. W., Yeger, H., Freedman, M. H., Minden, M D., and Penn, L. Z. Increased sensitivity of acute myelogenous leukemias to lovastatin-induced apoptosis: a potential therapeutic approach. Blood, 93: 1308-1318, 1999) that lovastatin, a prototypic member of the statin family, can induce apoptosis of human acute myeloid leukemia (AML) cells in a sensitive and specific manner. In the present study, we evaluated the relative potency and mechanism of action of the newer synthetic statins, fluvastatin, atorvastatin, and cerivastatin, to trigger tumor-specific apoptosis. Cerivastatin is at least 10 times more potent than the other statins at inducing apoptosis in AML cell lines. Cerivastatin-induced apoptosis is reversible with the addition of the immediate product of the HMG-CoA reductase reaction, mevalonate, or with a distal product of the pathway, geranylgeranyl pyrophosphate. This suggests protein geranylgeranylation is an essential downstream component of the mevalonate pathway for cerivastatin similar to lovastatin-induced apoptosis. The enhanced potency of cerivastatin expands the number of AML patient samples as well as the types of malignancies, which respond to statin-induced apoptosis with acute sensitivity. Cells derived from acute lymphocytic leukemia are only weakly sensitive to lovastatin cytotoxicity but show robust response to cerivastatin. Importantly, cerivastatin is not cytotoxic to nontransformed human bone marrow progenitors. These results strongly support the further testing of cerivastatin as a novel anticancer therapeutic alone and in combination with other agents in vivo.

Abstract

The statin family of drugs inhibits 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, the rate-limiting enzyme of the mevalonate pathway, and is used clinically as a safe and effective approach in the control of hypercholesterolemia. We have shown previously (Dimitroulakos, J., Nohynek, D., Backway, K. L., Hedley, D. W., Yeger, H., Freedman, M. H., Minden, M D., and Penn, L. Z. Increased sensitivity of acute myelogenous leukemias to lovastatin-induced apoptosis: a potential therapeutic approach. Blood, 93: 1308-1318, 1999) that lovastatin, a prototypic member of the statin family, can induce apoptosis of human acute myeloid leukemia (AML) cells in a sensitive and specific manner. In the present study, we evaluated the relative potency and mechanism of action of the newer synthetic statins, fluvastatin, atorvastatin, and cerivastatin, to trigger tumor-specific apoptosis. Cerivastatin is at least 10 times more potent than the other statins at inducing apoptosis in AML cell lines. Cerivastatin-induced apoptosis is reversible with the addition of the immediate product of the HMG-CoA reductase reaction, mevalonate, or with a distal product of the pathway, geranylgeranyl pyrophosphate. This suggests protein geranylgeranylation is an essential downstream component of the mevalonate pathway for cerivastatin similar to lovastatin-induced apoptosis. The enhanced potency of cerivastatin expands the number of AML patient samples as well as the types of malignancies, which respond to statin-induced apoptosis with acute sensitivity. Cells derived from acute lymphocytic leukemia are only weakly sensitive to lovastatin cytotoxicity but show robust response to cerivastatin. Importantly, cerivastatin is not cytotoxic to nontransformed human bone marrow progenitors. These results strongly support the further testing of cerivastatin as a novel anticancer therapeutic alone and in combination with other agents in vivo.

Statistics

Citations

133 citations in Scopus®
Google Scholar™

Downloads

1 download since deposited on 19 Jun 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Experimental Immunology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Health Sciences > Oncology
Life Sciences > Cancer Research
Language:English
Date:2001
Deposited On:19 Jun 2012 14:07
Last Modified:23 Jan 2022 20:51
Publisher:American Association for Cancer Research
ISSN:1078-0432 (P)
OA Status:Closed
Free access at:Official URL. An embargo period may apply.
Official URL:http://clincancerres.aacrjournals.org/content/7/7/2067.abstract