Header

UZH-Logo

Maintenance Infos

Resistance of equine tibiae and radii to side impact loads


Piskoty, Gabor; Jäggin, Sabina; Michel, Silvain A; Weisse, Bernhard; Terrasi, Giovanni P; Fürst, Anton (2012). Resistance of equine tibiae and radii to side impact loads. Equine Veterinary Journal, 44(6):714-720.

Abstract

Reasons for performing study: There are no detailed studies describing the resistance of equine tibiae and radii to side impact loads, such as a horse kick and a better understanding of the general long bone impact behavioural model is required. Objectives: To quantify the typical impact energy required to fracture or fissure an equine long bone, as well as to determine the range and time course of the impact force under conditions similar to that of a horse kick. Methods: Seventy-two equine tibiae and radii were investigated using a drop impact tester. The prepared bones were preloaded with an axial force of 2.5 kN and were then hit in the middle of the medial side. The impact velocity of the metal impactor, weighting 2 kg, was varied within the range of 6-11 m/s. The impact process was captured with a high-speed camera from the craniomedial side of the bone. The videos were used both for slow-motion observation of the process and for quantifying physical parameters, such as peak force via offline video tracking and subsequent numerical derivation of the 'position vs. time' function for the impactor. Results: The macroscopic appearance of the resultant bone injuries was found to be similar to those produced by authentic horse kicks, indicating a successful simulation of the real load case. The impact behaviours of tibiae and radii do not differ considerably in terms of the investigated general characteristics. Peak force occurred between 0.15-0.30 ms after the start of the impact. The maximum contact force correlated with the 1.45-power of the impact velocity if no fracture occurred (F(max) ≅ 0.926 ·v(i) (1.45) ). Peak force scatter was considerably larger within the fractured sub-group compared with fissured bones. The peak force for fracture tended to lie below the aforementioned function, within the range of F(max) = 11-23 kN ('fracture load'). The impact energy required to fracture a bone varied from 40-90 J. Conclusions: The video-based measuring method allowed quantifying of the most relevant physical parameters, such as contact force and energy balance. Potential relevance: The results obtained should help with the development of bone implants and guards, supporting theoretical studies, and in the evaluation of bone injuries.

Abstract

Reasons for performing study: There are no detailed studies describing the resistance of equine tibiae and radii to side impact loads, such as a horse kick and a better understanding of the general long bone impact behavioural model is required. Objectives: To quantify the typical impact energy required to fracture or fissure an equine long bone, as well as to determine the range and time course of the impact force under conditions similar to that of a horse kick. Methods: Seventy-two equine tibiae and radii were investigated using a drop impact tester. The prepared bones were preloaded with an axial force of 2.5 kN and were then hit in the middle of the medial side. The impact velocity of the metal impactor, weighting 2 kg, was varied within the range of 6-11 m/s. The impact process was captured with a high-speed camera from the craniomedial side of the bone. The videos were used both for slow-motion observation of the process and for quantifying physical parameters, such as peak force via offline video tracking and subsequent numerical derivation of the 'position vs. time' function for the impactor. Results: The macroscopic appearance of the resultant bone injuries was found to be similar to those produced by authentic horse kicks, indicating a successful simulation of the real load case. The impact behaviours of tibiae and radii do not differ considerably in terms of the investigated general characteristics. Peak force occurred between 0.15-0.30 ms after the start of the impact. The maximum contact force correlated with the 1.45-power of the impact velocity if no fracture occurred (F(max) ≅ 0.926 ·v(i) (1.45) ). Peak force scatter was considerably larger within the fractured sub-group compared with fissured bones. The peak force for fracture tended to lie below the aforementioned function, within the range of F(max) = 11-23 kN ('fracture load'). The impact energy required to fracture a bone varied from 40-90 J. Conclusions: The video-based measuring method allowed quantifying of the most relevant physical parameters, such as contact force and energy balance. Potential relevance: The results obtained should help with the development of bone implants and guards, supporting theoretical studies, and in the evaluation of bone injuries.

Statistics

Citations

Dimensions.ai Metrics
7 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

5 downloads since deposited on 03 Apr 2012
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Equine Department
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Scopus Subject Areas:Health Sciences > Equine
Language:English
Date:2012
Deposited On:03 Apr 2012 09:55
Last Modified:20 Nov 2022 07:06
Publisher:Wiley-Blackwell
ISSN:0425-1644
Additional Information:For accepted manuscripts: This is the peer reviewed version of the following article: Piskoty, Gabor; Jäggin, Sabina; Michel, Silvain A; Weisse, Bernhard; Terrasi, Giovanni P; Fürst, Anton (2012). Resistance of equine tibiae and radii to side impact loads. Equine Veterinary Journal, 44(6):714-720, which has been published in final form at https://doi.org/10.1111/j.2042-3306.2012.00560.x. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. (http://www.wileyauthors.com/self-archiving)
OA Status:Green
Publisher DOI:https://doi.org/10.1111/j.2042-3306.2012.00560.x
PubMed ID:22432596
  • Content: Accepted Version
  • Language: English