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Large amounts of moving point data are generated daily through technological devices, 

such as GPS, digital navigation aids, or mobile phones. The analysis of movement data 

has become a hot topic in Geographic Information Science and related fields, such as 

ecology, with the aim to understand movement processes and movement behavior. 

Current data mining and visualization approaches focus on the algorithmic description of 

movement parameters to identify patterns. The context of the moving object, e.g. the 

environment in which the movement takes place, as well as the context of the analyst, 

such as their previous knowledge and perceptual skills, are only weakly considered when 

exploring, analyzing, and representing movement data.  

A cognitive conceptual framework is based on theoretical foundations from geographic 

information science, visualization research, and cognitive science, and specifically 

integrates cognitive science into the data collection and data visualization cycle. The 

development of the framework helps to get an understanding how humans process and 

conceptualize visualizations of movement.  

Three human subject experiments assess the influence of context information for the 

understanding of movement visualizations. In these experiments, context is defined as 

the geographic context of the moving object, as well as additional relevant information 

about the object and its behavior. The results suggest that the inclusion of context 

information is dependent on the analystsÕ task. The identification of basic movement 

parameters, such as speed, distance, direction, or velocity, does not require context 

information in visual displays. However, to understand certain movement behavior, e.g. 

an animal searching for food, context information helps to understand visualizations of 

movement. Specifically integrating geographic context information of the object is a 

useful step to help analysts understand movement processes and movement behavior, 

and to ultimately be able to give design guidelines for cognitively inspired visualizations 

of movement.  



 
 

 

!
!

"#!

 

)*#&++,-.&##*-/(

GPS, Mobiltelefone, und Navigationshilfen generieren tŠglich eine Vielzahl von 

Bewegungsdaten. Der Analyse von Bewegungsdaten wird heute immer mehr Beachtung 

in der Geographischen Informationswissenschaft und benachbarten Wissenschaften, wie 

z.B. Verhaltensbiologie, geschenkt. Die Auswertung gršsserer Datenmengen mit 

Algorithmen und Visualisierungen fokussiert dabei vor allem auf der geometrischen 

Beschreibung von Bewegungscharakteristiken, wie z.B. Geschwindigkeitswechsel. Dabei 

wird weder der Kontext des bewegenden Objektes, z.B. die Umgebung des Objektes, 

noch der Kontext des Benutzers, z.b. dessen Vorwissen wie auch perzeptiven 

FŠhigkeiten, ausreichend beachtet.  

Das kognitive Rahmenmodel dieser Arbeit basiert auf Theorien aus der Geographischen 

Informationswissenschaft und der Kognitionswissenschaft und versucht einen Weg 

aufzuzeigen, wie die kognitiven FŠhigkeiten des Benutzers integriert werden kšnnen, um 

Visualisierungen von Bewegungen zu verbessern.  

Drei Nutzerstudien messen den Einfluss von Kontext auf das VerstŠndnis von 

Visualisierungen von Bewegungsdaten. In diesen Experimenten wird Kontext zuerst als 

zusŠtzliche, relevante Information, und dann als geographischen Kontext, in diesem Fall 

durch eine Hšhenkarte, definiert. Die Ergebnisse erlauben die Annahme, dass Kontext 

eine wichtige Rolle spielt wenn Nutzer ein Objekt und die entsprechende Bewegung 

identifizieren sollen. Kontext spielt anscheinend jedoch eine geringere Rolle, wenn der 

Nutzer die geometrischen Bewegungscharakteristiken, wie z.B. ein 

Geschwindigkeitswechsel, erkennen soll. FŸr die Erkennung von Bewegungsmustern 

heisst das, dass generische Bewegungsmuster, die auf geometrischen 

Bewegungscharakteristiken beruhen keine zusŠtzliche Kontextinformation brauchen. Die 

Identifikation von speziellen Bewegungsmustern, wie z.B. Futtersuche bei Tieren, wird 

jedoch enorm erleichtert, wenn Kontextinformation vorhanden ist.  



 
 

!
!

#

!'0-123,4/,+,-$#(
This thesis would not have been possible without the guidance, support, understanding, 

and help from a lot of people. I would like to express my highest gratitude to these 

people.  

 

I would like to thank my supervisor Prof. Dr. Sara Fabrikant for giving me the chance to 

conduct this research within her research project ÒPopEyeÓ. Her contribution of time, 

encouragement, and patience has been invaluable to the maturation of my thesis. The 

Swiss National Science Foundation funded this project. I would like to thank Prof. Dr. 

Robert Weibel for his enthusiasm about context and his support. I would also like to 

thank Prof. Dr. Mary Hegarty for sharing her time and her expertise on human subject 

experiments. Also, I would like to thank her for her warm welcome and her support 

while working at UCSB. My heartfelt thanks also go to Dr. Tumasch Reichenbacher, 

who stepped in as co-advisor when needed and always provided me with thoughtful 

discussions, advise, and constructive criticism.  

Many people of the Department of Geography assisted, supported, and inspired me in 

various ways, and I would like to thank the colleagues from GIVA and GIS for their 

discussions. Many thanks go to Dr. Ross Purves, who always has an open ear, and whose 

helpful advise, comments, and discussions allowed the finishing of this thesis. I 

particularly thank Ramya Venkateswaran for her programming expertise and her 

encouragement while setting up the third experiment, and Stefano de Sabbata for helping 

me aggregate my data files. I would like to extend my thanks to my office mate Jan 

Wilkening for sharing the ups and downs during the PhD. My heartfelt thanks go to 

Arzu Cšltekin, who always had an ear for my concerns, and who guided me on my way 

through academia with her expertise. I would like to thank Somayeh Dodge for being 

such a welcoming friend and project partner, for fun and crucial times throughout my 

time at GIUZ. Additonally, I would like to thank Ralph Straumann for his randomization 

ideas, discussions, and encouragement. I would like to extend my thank to Kenan Bektas, 

Pia Bereuter, David Caduff, Paul Crease, Patrick Laube, Patrick LŸscher, Frank 

Ostermann, Marco Salvini, Ronald Schmidt, and Martin Tomko for their contributions 

and discussions.  

 



 
 

 

!
!

#"!

I would like to thank Reto Zupf and Daniel Kšchli from the ZHAW WŠdenswil for the 

permission to use movement data from the Mafreina Project. I would like to extend my 

appreciation to the participants of these experiments for their time.  

 

Finally, I would like to thank my parents for their loving upbringing, for their 

encouragement to do a PhD in Switzerland, as well as their emotional support 

throughout the years. I thank my brother Benedikt and my sister Julia for endless phone 

calls, bike rides, visits, and motivation. Special thanks go to my friends, Jacqueline, 

Manuela, Nina, and Stefanie for their constant encouragement, especially in rough times!  

Last but not least, I thank Damian Blarer for his endless support, motivation, patience, 

interest, and love. You kept me grounded at all times and shared life with me besides 

academics. It would not have been possible without you! Thank you!  



 
 

!
!

#""!



 
 

 

!
!

#"""!

(

51-$,-$(
Abstract....................................................................................................................................... iii!
Zusammenfassung .................................................................................................................... iv!

ACKNOWLEDGEMENTS ....................................................................................V!

INTRODUCTION...................................................................................................1!

1.1 Problem Statement and Motivation..................................................................................2!
1.2 Aim.........................................................................................................................................4!
1.3 Approach...............................................................................................................................5!
1.4 Structure of thesis ................................................................................................................7!

2. STATE OF THE ART......................................................................................... 9!

2.1 The nexus of space and time..............................................................................................9!
2.2 Data Perspective ................................................................................................................12!

2.2.1 Limitations of the data perspective .........................................................................14!
2.2.2 Proposed avenues.......................................................................................................15!
2.2.3 Summary ......................................................................................................................17!

2.3 Visualization perspective ..................................................................................................18!
2.3.1 Revisiting the classics.................................................................................................18!
2.3.2 Explicitly visualizing time..........................................................................................19!
2.3.3 Using interaction to understand when and where ................................................20!
2.3.4 Towards cognitively inspired visualizations ...........................................................21!
2.3.5 Using event-based approaches to understand why? .............................................22!
2.3.6 Limitations of the visualization perspective...........................................................23!

2.4 Cognitive perspective ........................................................................................................25!
2.4.1 Events from a cognitive science perspective .........................................................26!

2.5 Summary..............................................................................................................................28!

3. A COGNITIVE CONCEPTUAL FRAMEWORK FOR MOVEMENT DATA 
VISUALIZATIONS................................................................................................30!

3.1 Data perspective.................................................................................................................31!
3.2 Cognitive Perspective........................................................................................................34!
3.3 Visualization perspective ..................................................................................................37!

4. METHODOLOGICAL OVERVIEW................................................................39!

4.1 Introduction to empirical investigations ........................................................................39!
4.2 Methods used .....................................................................................................................40!

4.2.1 Qualitative Interviews................................................................................................40!
4.2.2 Controlled Experiments............................................................................................42!

 

 



 
 

!
!

"$!

5. EMPIRICAL EVALUATIONS..........................................................................44!

5.1 Experiment I Ð relevant information..............................................................................44!
5.1.1 Participants..................................................................................................................45!
5.1.2 Experimental Design .................................................................................................45!
5.1.3 Procedure.....................................................................................................................48!
5.1.4 Results ..........................................................................................................................51!
5.1.5 Summary of Results for Experiment I....................................................................63!

5.2 Experiment II Ð geographic context...............................................................................66!
5.2.1 Participants..................................................................................................................66!
5.2.2 Experimental Design .................................................................................................66!
5.2.3 Procedure.....................................................................................................................70!
5.2.4 Data Preparation ........................................................................................................70!
5.2.5 Results ..........................................................................................................................72!
5.2.6 Summary of Results for Experiment II ..................................................................83!

5.3 Experiment III Ð segmentation .......................................................................................87!
5.3.1 Participants..................................................................................................................87!
5.3.2 Experimental Design .................................................................................................88!
5.3.3 Procedure.....................................................................................................................89!
5.3.4 Data Preparation ........................................................................................................90!
5.3.5 Results of Statistical Analysis....................................................................................95!
5.3.6 Results Spatial analysis.............................................................................................101!
5.3.7 Summary of Results for Experiment III...............................................................108!

5.4 Key Findings from the Experiments ............................................................................110!

6. DISCUSSION ....................................................................................................111!

6.1 Data Perspective ..............................................................................................................111!
6.2 Cognitive Perspective......................................................................................................112!
6.3 Visualization Perspective ................................................................................................114!
6.4 Scope of the Framework ................................................................................................116!
6.5 Limitations ........................................................................................................................117!

7. CONCLUSION AND FUTURE WORK......................................................... 119!

7.1 Summary............................................................................................................................119!
7.2 Revisiting the hypotheses ...............................................................................................119!
7.3 Scientific Contributions ..................................................................................................120!
7.4 Future Work .....................................................................................................................121!

7.4.1 Taxonomy and Framework ....................................................................................121!
7.4.2 Improvements for Empirical Testing ...................................................................121!
7.4.2 Design Guidelines for Visualizations....................................................................122!

REFERENCES .................................................................................................... 123!

APPENDIX .......................................................................................................... 131!

Questions and Stimuli for Experiment I ............................................................................131!
Stimuli for overall analysis: ...............................................................................................132!
Two Exemplary Stimuli for Detailed Analysis ..............................................................133!

Randomization Function for Experiment II .....................................................................135!
Stimuli for Experiment II & III...........................................................................................136!
Functions.js: ............................................................................................................................138!
ArcMap Clustering .................................................................................................................143!



 
 

 

!
!

$!

!

67#$(1.(87/*%,#(
Figure 1: Context information of a moving object and a user................................................................................4!
Figure 2: Workflow of the thesis.................................................................................................................................5!
Figure 3: A cognitive conceptual framework to improve visualizations of movement......................................6!
Figure 4: Adoption of the space-time path with a space-time prism (Source: Moore et al. 2003)..................10!
Figure 5: Movement trajectories from two different moving objects................................................................. 15!
Figure 6: Kwan's space-time aquarium as a 3D GIS visualization method (from Kwan 2004, courtesy to 
Mei-Po Kwan)..............................................................................................................................................................19!
Figure 7: Visualizing events along two routes in GeoTime (Kapler and Wright 2005)by placing pins on top 
of an event....................................................................................................................................................................23!
Figure 8: Ideal cycle of movement behavior and its analysis................................................................................29!
Figure 9: A cognitive conceptual framework for movement visualizations.......................................................31!
Figure 10: Taxonomy of movement patterns (Source: Dodge, Weibel, LautenschŸtz, 2009)........................32!
Figure 11: The identification of generic and behavioral movement patterns....................................................35!
Figure 12: Movement trajectory displays shown to interview partners..............................................................41!
Figure 13: Context conditions for Experiment I....................................................................................................46!
Figure 14: A full trajectory for the overall analysis (a), and a part of the trajectory for the detailed analysis 
(b)...................................................................................................................................................................................47!
Figure 15: Individual parts of the experiments and the number of questions for each part...........................48!
Figure 16: Example display of the first part of Experiment I (overall analysis)................................................50!
Figure 17: Example display of the second part of Experiment I (detailed analysis).........................................50!
Figure 18: Pattern recognition by context for Experiment I................................................................................51!
Figure 19: Object identification by context condition for Experiment I...........................................................52!
Figure 20: Recognition of object behavior by context for Experiment I...........................................................53!
Figure 21: Relative accuracy across context conditions in Experiment I with standard error of means.......53!
Figure 22: Relative accuracy for five movement variables with standard error of means...............................54!
Figure 23: Relative accuracy for movement parameters across context for Experiment I..............................54!
Figure 24: Efficiency of participants by context condition...................................................................................55!
Figure 25: Mean response times for movement parameters.................................................................................56!
Figure 26: Response times for movement parameters across context................................................................56!
Figure 27: Areas of Interest (AOI) for the overall trajectory with full context information...........................57!
Figure 28: Time to first fixation for object recognition across context..............................................................59!
Figure 29: Time to first fixation for Behavior Recognition..................................................................................59!
Figure 30: Time to first fixation for position information in seconds................................................................60!
Figure 31: Time to first fixation for speed information in seconds....................................................................61!
Figure 32: Time to first fixation for velocity information in seconds................................................................. 62!
Figure 33: Time to first fixation for distance information in seconds................................................................62!
Figure 34: Time to first fixation for duration information in seconds...............................................................63!
Figure 35: Geographic context is manipulated by (a) a homogeneous background (left) or (b) a terrain map 
(right).............................................................................................................................................................................67!
Figure 36: Behavioral context is differentiated by two activities, ski touring (left), and skiing on slopes 
(right).............................................................................................................................................................................68!
Figure 37: The path type is either open (left) or closed (right)............................................................................68!
Figure 38: Workflow for the analysis of Experiment II ........................................................................................71!
Figure 39: Mean confidence ratings for activity and path type............................................................................73!
Figure 40: Mean confidence ratings for context correctness................................................................................73!
Figure 41: Accuracy of object recognition by activity and path type..................................................................74!
Figure 42: Accuracy of object recognition for correctness of context................................................................75!
Figure 43: A correctly placed trajectory leads to Piz Tarretas (a), while an incorrectly placed trajectory (b) 
does not lead anywhere..............................................................................................................................................75!
Figure 44: Frequencies of object recognition without context information......................................................76!
Figure 45: Frequencies of object recognition with context information............................................................76!
Figure 46: Frequency of categories for ski tour data without context information..........................................78!
Figure 47: Frequency of categories for ski tour data with context information................................................78!
Figure 48: Frequency of categories for object recognition for skiing on slopes (piste) without context 
information...................................................................................................................................................................79!



 
 

!
!

$"!

Figure 49: Frequency of categories for object recognition for skiing on slopes (piste) with context 
information...................................................................................................................................................................80!
Figure 50: Frequency of categories of added comments without context information...................................81!
Figure 51: Frequency of categories for Tour, added comments with context information............................81!
Figure 52: Frequency of categories for Piste data, added comments without context information..............83!
Figure 53: Frequency of categories for Piste data, added comments with context information....................83!
Figure 54: Experiment display showing the task and identifying trajectory segments.....................................90!
Figure 55: Data Preparation for Experiment III....................................................................................................91!
Figure 56: An example of evaluating clusters.........................................................................................................94!
Figure 57: Mean number of breakpoints for correct geographic context..........................................................96!
Figure 58: Box plot with two outliers for 50 participants showing the non-normal distribution...................96!
Figure 59: Histogram of the non-normal distribution for 50 participants.........................................................97!
Figure 60: Data distribution of number of points for 48 participants................................................................97!
Figure 61: Mean number of breakpoints for activity and path type....................................................................99!
Figure 62: Mean confidence for path type and activity for Experiment III.....................................................100!
Figure 63: Mean confidence for correct geographic context..............................................................................101!
Figure 64: Mean number of cluster according to activity and geographic context.........................................102!
Figure 65: Generated clusters by participants for activity ski touring without context information...........103!
Figure 66: Generated clusters by participants for activity ski touring with context information.................103!
Figure 67: Generated clusters by participants for a false tour trajectory..........................................................104!
Figure 68: Frequency of cluster for activity and path type.................................................................................105!
Figure 69: Generated clusters by participants for activity skiing on slopes without context information..106!
Figure 70: Generated clusters by participants for activity skiing on slopes with context information........106!
Figure 71: Generated clusters by participants for a false piste trajectory with context information............107!
Figure 72: Categories of clusters evaluated according to movement parameters............................................108!
!

67#$(1.(9&"3,#(
Table 1: All stimuli for Experiment II & III by activity and path type...............................................................69!
Table 2: Summary of results for Experiment II.....................................................................................................84!
Table 3: Aggregated data files and their analysis focus..........................................................................................94!





Introduction 
 

!
!

%

:-$%14*'$71-((
Every process happens somewhere in space and time, such as weather, tides, migration, 

or traffic. Weather, for instance, is happening in the atmosphere, creating fronts that 

move from one place to the next, bringing us rain and sun. Animals and humans are 

moving on the earthÕs surface, to find food, places of shelter, and to communicate with 

one and another. Movement is a process that results in change of location through time. 

Movement of point objects, like animals and humans, has been the focus of interest in 

geography and cognate research areas for many decades. Ecologists, for instance, are 

interested in the behavior of animals and use radio collars and GPS devices to track 

animals in their natural habitat. In geography, movement research has been studied with 

foci in transportation geography, time geography, and spatial behavior research for the 

last decades. With the advances of technology, movement data can be captured easier 

than ever. Humans use mobile phones, digital navigation devices, or GPS to get location 

information. The availability of large amounts of movement data facilitates the 

development of various analysis methods to analyze movement data. The analysis of 

moving point data has become a hot topic to investigate not only what and where 

movement has happened, but also to get insights into why movement has happened. In 

ecology, for instance, the introduction of global positioning systems (GPS) and telemetry 

data collection methods has facilitated various successful animal behavior studies (Frair et 

al. 2010; Tomkiewicz et al. 2010). In Geographic Information Science (GIScience) the 

exploration of moving point datasets for identifying movement patterns has become a 

research focus (Dykes and Mountain 2003) and has led to a variety of approaches 

(Buchin et al. 2009; Dodge et al. 2009; Gudmundsson et al. 2004; Laube et al. 2005) and 

tools, such as Hawths Tools, Home Range extension, and Tracking Analyst for ESRIÕs 

ArcMap. Common to these approaches and tools is that movement data is analyzed with 

algorithms according to their basic movement parameters, such as speed, distance, 

direction and velocity (Dodge et al. 2008). The analysis is mainly independent of the 

surrounding geographic context, i.e. the location in which movement takes place, for 

instance, the geographic context of a moving ibex is steep terrain in an alpine setting. 

However, it remains an open research question if movement analysis without geographic 

context information allows answers to the question why movement is happening.  
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Visual analytics tools, such as GeoVista Studio (Gahegan 2001) or CommonGIS 

(Andrienko et al. 2003) have been developed based on the contention that they combine 

computational methods with the outstanding human capabilities for pattern recognition, 

imagination, association, and reasoning (Andrienko et al. 2003). However, exploring, 

extracting, and understanding the meaning encapsulated in movement data from a user 

perspective has become a bottleneck, especially because the inherent complex and 

multidimensional nature of the data has not been sufficiently integrated into visual 

analytics tools from a user perspective.  

Only limited research has been carried out to fully integrate spatio-temporal data at the 

human computer interface level, that is, effectively representing spatio-temporal data to 

the user in a cognitively plausible way. Cognitively plausible in this context means that 

visualizations of movement are built on how humans perceive and process information 

(Fabrikant and Skupin 2005). To this point, no theory or groundwork exists that clarifies 

what makes a visualization cognitively plausible for analyzing movement behavior. 

Specifically, visual analytics has to consider how users conceptualize and understand 

movement data (Fabrikant et al. 2008a) to ensure the inclusion of cognitive principles for 

the integration of space-time data. One major factor to make the data more accessible for 

the users is the integration of context information, specifically the geographic setting in 

which movement takes place. This approach might be indispensable to help detect 

behavioral movement patterns in animal or human behavior, such as foraging, 

chase/escape, or fight and pursuit. Although researchers argue for the inclusion of 

context information, so far, only few approaches explicitly integrate context or semantic 

information in the analysis of movement data with the goal to identify movement 

patterns (Schmid et al. 2009; Yan et al. 2008).  

Context can be either the context of the moving object or the analystsÕ context (see 

Figure 1). The context of the moving object are the geographic location, the influence of 

other objects, its movement capacity, and the spatial and temporal scale of the object and 

its sampling.  

The geographic location of the object can be an ibex moving in alpine terrain. The 

geographic location of the object is crucial in mobile computing and describes context-

awareness as Òto provide relevant information and/or services to the userÓ (Dey and 

Abowd 2000). In a movement ecology framework introduced by Nathan et al. (2008), the 

geographic context is also considered one of the key elements to understand which 
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external factors affect animal movement. The geographic location therefore seems to be 

a very important context element to understand movement and its behavior. It has 

therefore been identified as a key factor to be empirically evaluated in this thesis. The 

influence of other moving objects is another key aspect of context that is described in 

the movement ecology framework as one reason to explain the internal state of moving 

objects. This context factor aims at explaining why a movement is happening, e.g. 

because a predator is following prey. Another contextual factor is the movement capacity 

of an object, including its motion capacity, e.g. an ibex can run and climb but not swim, 

as well as its navigation capacity of an object, e.g. to where it moves. Finally, the spatial 

and temporal scale of an object is also considered to be the context of an object. This 

relates to the sampling rate of moving point data, e.g., yearly migration of birds as 

opposed to daily movement patterns of a butterfly.  

The context of the analyst also influences the understanding of movement data (see 

Figure 1). Users have different degrees of previous knowledge when assessing spatio-

temporal data, e.g., a behavioral ecologist is potentially trained to find home ranges, while 

a transportation analyst is more trained to understand the network dynamics. 

Additionally, an analystÕs perceptual and cognitive ability also influences his/her 

understanding of spatio-temporal data. Two other factors that influence the user when 

analyzing and understanding spatio-temporal data are the analysis task and the user 

interface. The analysis task determines what the analyst is trying to find out, e.g. looking 

for home ranges or the identification of similarities between movement trajectories. The 

display influences how good the analyst can solve specific analyses tasks, i.e., a well-

designed interface/display helps the analyst to better understand and analyze spatio-

temporal data.  

The analysis of movement data is therefore dependent on the analystÕs context and the 

context of the moving object. This thesis empirically assesses the context of the moving 

object, and specifically whether information about the geographic location of a moving 

object helps the user to understand the behavior of a moving object when analyzing its 

trajectory. The experiments therefore aim to provide empirical evidence if context 

information helps analystÕs to facilitate previous knowledge and perception and cognition 

when analyzing movement trajectories.  
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In order to enhance visual analytics tools by integrating cognitive principles, we have to 

ask to what extent cognitive factors influence our understanding, reasoning, and analysis 

of movement data, and which factors could enhance decision making with visual 

representations of movement data. It is specifically important to comprehend humanÕs 

knowledge construction and reasoning about spatial and temporal phenomena and 

processes in order to improve visually extracting movement patterns and making 

informed decisions when analyzing the data. A better understanding of human cognitive 

processes is fundamental to facilitate sense-making of movement data, and to ultimately 

develop empirically validated guidelines for the construction of cognitively inspired 

visualizations of movement.  
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This dissertation project is situated at the interdisciplinary setting of geographic 

movement pattern research and cognitive science and is part of the larger research 

project Òvisual analytics of spatio-temporal gaze point patterns in eye movementsÓ 

(Popeye). Popeye is funded by the Swiss National Fund and focuses on exploratory 

visualization, interaction, and evaluation and tries to identify how spatio-temporal 

information can be efficiently discovered, knowledge extracted and communicated in 

visual displays.  

This thesis focuses on how humans perceive and understand graphical displays of 

movement data. It especially examines how visualizations of movement trajectories are 

understood and how the inclusion of the moving objectsÕ context can help to understand 

behavioral movement patterns. As such, the work is guided by the following hypothesis:  
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Visualizations of movement data are not only dependent on the representation of basic 

movement parameters, but also have to consider perception and cognition of the user. The 

analysis of movement data is dependent on the userÕs context (e.g. task, previous knowledge, 

perception and cognition of the user) and the context of the moving object (e.g. spatial and 

temporal scale, relation to other moving objects, surrounding environment).  

 

I assume that providing context information of the moving object influences the 

understanding of the analyst in a positive way, i.e. the analyst recognizes specific 

movement behavior and patterns more easily. To assess this hypothesis statement 

requires comparing the results from empirical investigations, i.e. three individual human 

subject experiments (as described in Chapter 5). The experiments of this thesis are 

guided by the following overall research question: 

 

What is the effect of context information on the exploration and analysis of movement data? 
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The empirical assessment of context information can be structured into four stages (see 

Figure 2).  
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The first step (see 1  in Figure 2) is a systematic investigation of relevant research from 

GIScience, cognitive science, and geovisualization research, and highlights theoretic 

principles and previous research findings. These theoretical foundations then form the 

basis for the development of a cognitive conceptual framework (see 2  in Figure 2), 

which implements first findings from a taxonomy of movement patterns and expert 

interviews. The framework directs the subsequent human subject experiments, which are 

grounded in the cognitive perspective of the conceptual framework (see 3  in Figure 2). 

In a last step, findings from human subject experiments are discussed and integrated into 

the body of knowledge (see 4  in Figure 2).  

The main objective of the conceptual framework is the development of a sound 

integrated space-time visualization component that integrates humansÕ understanding of 

spatio-temporal processes in a cognitively inspired way. Figure 3 shows the conceptual 

framework in more detail. The framework consists of three perspectives (see Figure 3): a 

data perspective and a visualization perspective that are linked by a cognitive perspective. 

Each of the perspectives consists of top-down and bottom-up components. The top-

down components include theories and principles from existing research (as reviewed in 

Chapter 2) and are marked with theories at the top of Figure 3, while the bottom-up 

components are depicted at the bottom of the graphic and are derived from the 

development of the taxonomy of movement patterns (Dodge et al. 2008), human subject 

testing, as well as the design of visualizations. This thesis focuses on human subject 

testing within the cognitive perspective. 
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Briefly stated, the data perspective focuses on storing and modeling basic movement 

parameters, such as distance, direction, speed, position, velocity, instance, and interval 

(Dodge et al. 2008) and is depicted on the left side of Figure 3. The taxonomy of 

movement patterns (Dodge et al. 2008) is one of the bottom-up building blocks of the 

data perspective and distinguishes generic from behavioral movement parameters for 

automated, computer-based movement data analysis. Visual displays allow the 

exploration, identification, and analysis of generic and behavioral movement patterns in 

large amounts of movement data through cognitively inspired and perceptually salient 

displays as part of the visualization perspective (on the right side of Figure 3). A 

cognitive perspective is integrated that has largely been missing in previous work and 

potentially provides the missing link between data analysis and discovering knowledge in 

large movement databases. Systematic human subject testing within the cognitive 

perspective will allow evaluating existing theories and approaches for geovisualizations of 

movement data. Within this thesis I particularly focus on the assessment of context 

information for the conceptualization of spatio-temporal data in visual displays by 

introducing additional information about the moving object and its behavior in 

Experiment I, as well as adding geographic context information through a terrain map in 

Experiments II and III. The integration of these three perspectives is in my eyes essential 

to improve visualizations of moving point data for more effective and efficient spatio-

temporal exploration and decision-making.  

 

;<E(>$%*'$*%,(1.($D,#7#(

The remainder of this thesis is organized as follows: 

Chapter 2 reviews theoretical research findings from geographic information science, 

visualization and cognitive science and identifies research gaps. Chapter 3 introduces the 

conceptual framework for movement visualizations. It describes initial research steps, 

such as the development of a taxonomy of movement patterns and qualitative expert 

interviews. Chapter 4 provides a short overview on employed experimental methods 

including eye movement data collection method. Chapter 5 presents the experiments, 

which deal with the identification of movement parameters and the identification of 

object and behavior in visual displays of movement. Chapter 6 critically discusses the 

research findings and the relevance of the framework. The chapter also highlights 

limitations of this approach. Chapter 7 summarizes the overall findings of the thesis and 
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concludes with the contribution of this thesis. It also highlights potential future research 

directions.  

!
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Various research areas have long-standing research interests in space-time phenomena 

and have re-discovered them recently due to the increased availability of massive 

movement data sets. Spatial characteristics of moving point data are either 

conceptualized as point or linear features with continuous, cyclical, or intermittent 

temporal characteristics (Yattaw 1999). The integration of spatio-temporal exploratory 

data analysis methods and visual analytics lies at the intersection of complementary 

research fields, such as GIScience (e.g., geographic information visualization, temporal 

GIS, spatial cognition), computer science (e.g., databases, human-computer interaction, 

and information visualization), and cognitive science. Based on the linkages between the 

proposed perspectives in the cognitive conceptual framework (see Introduction, Figure 

2) the review is guided by the question to which extent cognitive issues have been 

integrated in various previous approaches. The review starts with relevant literature from 

the data perspective, and highlights research in geography and GIScience that has been 

moving from a more descriptive approach and analysis (i.e., analysis of movement 

patterns), to a more dynamic, and process-oriented approach. I then survey the geovisual 

analytics literature, also documenting a paradigm shift from static visualizations to 

interactive and dynamic displays of moving phenomena. Finally, the review presents the 

respective state-of-the-art literature from cognitive science research, e.g. spatio-temporal 

reasoning, event understanding, etc., that has been largely overlooked in GIScience 

research work on moving phenomena at an individual level, e.g. humans and animals.  

!
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ãTogether, space and time form the framework for the cage within which human life unfoldsÒ. 

(Haggett 2001) 

Basically all geographic movement is associated with the spatial and temporal change of 

an object (Yattaw 1999). Since at least the 1960s, geographers have realized that the study 

of spatio-temporal processes is essential to explain resulting spatial patterns, and to 

identify potential cause-and-effect relationships of processes, such as cities and migration 

(urban phenomena), human travel behavior, or land use and land cover change. 

In the 1960s HŠgestrand and his colleagues (HŠgerstrand 1970) moved away from 

aggregate time-space studies to tracking individuals, which results in detailed localized 
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movement trajectories. Since then, geography has continued investigating diffusion 

processes of all sorts, including human travel and migration behavior, or movements of 

animals and goods, and Geographic Information Systems (GIS) are increasingly used for 

displaying the results of the studied activity patterns (Forer and Huisman 2001; Golledge 

and Stimson 1997; Miller 1991; Zhao et al. 2008).  

One of HŠgestrandsÕ core space-time concepts is the space-time prism (or cube) as 

shown in Figure 4. The prism is formed by two spatial dimensions (x, y) and is extended 

by a third dimension (z) to represent time. The two-dimensional space records the 

change of location of a moving object, while the third dimension is used to order the 

sequence of events during the movement happening over space. Truly three dimensional 

movement is reduced to a two dimensional space and does not take into account altitude 

changes, for instance from airplanes, birds, or fish The movement of an individual in 

physical space is therefore mapped as a so-called space-time path within the space-time 

cube.  
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The space-time path consists of vertical and tilted segments. The tilted segments 

represent movement of the object across space and time, while the vertical segments 

communicate the stationary nature of the object. The degree of tilt corresponds to the 
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speed of the movement. Faster movements have a shallower path, in comparison to 

steep paths that indicate slower movement. 

The concept of the space-time path and its integration into GIS has recently gained 

renewed interest (Kraak 2003; Kwan 2000; Kwan 2004; Kwan et al. 2003; Neutens et al. 

2008). 3D models and visualizations of human activity patterns have been developed 

with GIS, in which 3D space-time paths and 2D contextual layers are presented to users 

for data exploration in 3D. With this method, aggregate and individual activity-travel 

patterns can be revealed. Yu (2006; 2007) extended this 3D GIS framework for human 

activities in physical and virtual environments. These authors propose a temporal 

dynamic segmentation method and four human interaction modes to visually explore 

traffic congestion, security, and public health issues. Shaw et al. (2008) propose a 

generalized space-time path approach to visualize spatiotemporal changes among many 

individuals in large datasets. The authors present a proof-of-concept implementation of a 

space-time GIS using ESRIÕs ArcScene and ArcMap modules that provide a respective 

exploratory spatio-temporal analysis environment to search for hidden movement 

patterns.  

While HŠgerstrand developed the space-time model as an analytical tool to study 

dynamic processes, the time geographic approach in GIS has been more often used to 

identify and visualize patterns, rather than to explain the process behind the movement 

pattern. Moreover, the space-time cube often breaks down when large amounts of 

individual trajectories are depicted in a single display. This is especially problematic, as 

movement databases are typically massive. The tighter integration of spatio-temporal 

data into GIS is therefore a great promise, not only to look at patterns, but also to 

understand dynamic processes.  

Studying individual human activity patterns has become a wider research field, perhaps 

for two reasons: First and foremost, high-resolution data collection has become a rapid 

and fairly easy process. In fact, large amounts of spatio-temporal data are generated daily 

through technological devices, such as mobile phones, GPS, and digital navigation aids. 

Second, advances in computer hardware and software allow for the straightforward 

processing and interactive manipulation of movement data. Today, activity-based 

approaches are still used, for instance, for traffic analysis to cope with problems due to 

managing traffic demand (Axhausen and GŠrling 1992), household activity scheduling 

(Doherty et al. 2002), travel behavior (Forer and Huisman 2001), location-based services 

(Raubal et al. 2004), fighting crime (Kapler and Wright 2005), and in general for 
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understanding human migration and mobility behavior (Golledge and Stimson 1997; 

Miller 1991). 
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While off-the-shelf geographic information systems (GIS) are excellent at representing, 

and analyzing spatially referenced data, they are still limited in handling temporally 

referenced, continuously changing spatio-temporal datasets, such as, dynamic patterns, 

evolving processes, and unfolding events (Peuquet and Kraak 2002). Due to its inherent 

complex, multidimensional and dynamic nature, the spatial and temporal dimension of 

geographic data need to be meaningfully integrated into GIS or visual analytics tools for 

efficient and effective human spatio-temporal information processing and sense-making.  

In order to make GIS more effective for research in domains that focus on the 

explanation and prediction of processes and their dynamic patterns, it is crucial to 

develop new analysis methods that can truly integrate the spatial and temporal 

components of movement pattern analysis.  

Database researchers in the geographic information science and computer science 

communities have been successful at integrating spatio-temporal data on an advanced 

database level (Peuquet and Duan 1995), and powerful data-mining techniques have been 

developed to mine these massive spatio-temporal databases (Miller and Han 2001). 

Already in the early 1990s researchers identified the need to include time into geographic 

information systems to model and represent spatio-temporal processes more effectively 

(Langran 1992; Peuquet 1994). Peuquet proposes the Triad Framework that facilitates the 

transformation from a Òworld history modelÓ to a Òprocess modelÓ which reflects a 

better understanding of the phenomena to be represented (Peuquet 1994). Raper (2000) 

reflects that new generations of multidimensional geo-representations are key to the 

process of spatio-temporal reasoning in multidimensional geographic information 

science. In GIScience several researchers have proposed the integration of time to spatial 

databases (Grenon and Smith 2004; Hornsby and Egenhofer 2000; Worboys 2005). 

More recently, the analysis of moving objects has emerged as a new research thread in 

geographic information science. Movement patterns can be defined as Òany recognizable 

spatial or temporal regularity or any interesting relationship in a set of movement dataÓ 

(Dodge et al. 2008). The most common representation of moving object data is points, 

e.g. each GPS fix is represented as one point. Moving objects, according to Dodge et al. 
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(2008), may be distinguished between geo-referenced and non-geo-referenced moving 

entities. Geo-referenced objects are moving in physical and human-built landscapes (i.e., 

humans in cities or animals in their habitats), while non-geo-referenced objects (i.e., 

avatars in a virtual environment, or gaze points from eye movement data) move in non-

geographic space (i.e. virtual environments) (Dodge et al. 2008). The most basic 

conceptualization of a moving objectÕs space-time behavior is a geo-spatial lifeline 

(Hornsby and Egenhofer 2002), which describes a sequence of visited locations in space, 

in regular or irregular temporal intervals (Laube et al. 2005).  

The availability of large movement databases initiates the analysis of more complex 

questions with the aim to understand movement processes. New approaches are needed 

to analyze the data and discover movement patterns (Mennis and Guo 2009). In 

GIScience, Laube et al. (2007b) employ exploratory geographic knowledge discovery 

(ESDA) that integrates GIS with space-time data mining approaches to reveal interesting 

spatio-temporal patterns. The Relative Motion (REMO) approach (Laube et al. 2005), for 

example, compares motion attributes of groups of moving point objects over space and 

time and is based on two steps. First, lifeline data is transformed into a REMO matrix, 

and movements are compared with formalized, generic patterns (Laube et al. 2005). Four 

REMO patterns are introduced and tested in this approach; constancy, concurrence, 

change, and trendsetter. Laube and Purves (2006) propose to extract movement patterns 

based on four basic knowledge discovery steps, i.e. data reduction and projection, 

exploratory analysis and model selection, data mining, and finally visualization. They also 

propose a method to measure the interestingness of patterns (Laube and Purves 2006) 

using Monte Carlo simulations, a method that HŠgestrand and colleagues pioneered for 

geography already in the late 1950s (Haggett 2001), specifically for studying movement at 

a disaggregate levels.  

Others have used data mining approaches to identify specific types of movement 

patterns, such as Andersson et al (Andersson et al. 2008) who investigate leadership 

patterns among spatio-temporal data. Two of the most basic spatio-temporal patterns, 

namely flock and meeting, are computed with exact and approximation algorithms 

(Gudmundsson and van Kreveld 2006). Spatial clustering methods are also used for 

movement trajectory data, for example to identify outliers and path anomalies (Lu et al. 

2009). Lifeline segmentation and feature extraction methods for revealing physical 

differences and similarities of moving objects have also been employed (Dodge et al. 

2009). A general review of existing movement patterns can be found in Dodge et al. 
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(Dodge et al. 2008), who also detail a taxonomy of existing patterns. The identification of 

movement patterns is a challenge due to the massive volumes and the complexity of 

spatio-temporal information. Spatial data mining approaches and geographic knowledge 

discovery are iterative processes that include data selection and preprocessing by 

computational algorithms, and the evaluation of results to extract useful information 

from large amounts of movement data (Mennis and Guo 2009).   
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The computational methods reviewed above have mainly focused on the geometrical 

parameters of movement trajectories and are therefore only describing the characteristics 

of the movement pattern. These approaches are typically data-driven and do not include 

respective research goals or tasks of the human analyst, or contextual information, such 

as the geographic space of the sampled data. I contend that this might greatly hinder 

understanding the processes underlying these movement patterns. Prior to cell phones 

and location-aware personal digital assistants, movement data has been collected with 

detailed travel diaries and activity surveys (Zhao et al. 2008). Hence, while the activities 

and reasons for movement were known (i.e., process), the datasets were tedious to 

collect and thus often limited in scope and quantity. It seems, however, that quantity is 

traded for quality today with the automated and fast coordinate recordings through GPS-

enabled devices, as research now is attempting to infer the missing semantics from these 

dynamic moving object data streams. As Zhao et al (2008) rightly note, the human 

activity that generates movement patterns is not simply an adjunct attribute to a GPS 

trajectory dataset, but an inherent motivation of the process that generates the 

movement in the first place (p.199).  

With the availability of large amounts of movement data for studying increasingly 

complex space-time behavior, the presentation, exploration, and analysis of trajectory 

data have also become cognitively more demanding. Figure 5 shows two movement 

trajectories from different moving point objects.  
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It is clearly visible that the two different types of moving point objects generate different 

path types. The first trajectory (a) shows a trajectory of a migrating caribou and due to its 

sampling rate it is presented as a discontinuous path with stop-and-go sequences. In 

contrast, the second trajectory (b) shows a bicycle rider with a continuous-looking path. 

The reasons for the different path types are in this case not only the inherent manner of 

the movement (e.g., differences in speed, velocity, etc.), but also different sampling 

methods. Hence, domain experts who analyze movement trajectory data have to be 

aware of the collection details of their data, including the behavioral characteristics of the 

studied moving objects, i.e. the process that generates the trajectory. Moreover, 

researchers do not simply use their pattern recognition abilities and discover movement 

patterns, but do so with a particular research question or discovery task in mind. 

Additionally, their analysis is based on their previous knowledge of the studied 

phenomenon (i.e., familiarity with the data), and the scale of the sampled movement 

data. This simple example suggests that not only geometry plays a major role when 

analyzing complex environmental processes and spatio-temporal phenomena, but also 

the semantics, including the context of the moving object (surrounding environment of 

the object, the influence of other moving objects, spatial and temporal scale of the 

movement), and the researcher context (task, purpose, cognition, perception). 
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GIScientists have recognized the need for the inclusion of cognitive principles in space-

time analysis (Klippel et al. 2007; Peuquet and Kraak 2002; Yan et al. 2008). Peuquet and 

Kraak (2002) present a first integration of formal representation approaches with 

cognitive and philosophical perspectives on space-time to more intuitively handle space-

time dynamics in a unified representational framework. Mennis et al. (2000) have made 
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an effort to incorporate cognitive principles into geographic database representations 

with their pyramid framework. Its core feature is the separation into a data component 

and a knowledge component. The data component reflects the cognitive process of 

getting an uninterpreted representation, while the knowledge component reflects the 

cognitive process that derives knowledge from it and categorizes it.  

In 2008, Yan et al. (2008) suggest semantic trajectory modeling in which geometric, 

geographic, and application domain knowledge is available through ontological modules 

to improve the understanding of movement trajectories. The semantic information is 

provided through these ontological models that explicitly model context information of 

the moving object. The geometric ontology module has information regarding spatio-

temporal characteristics of patterns; the geographic module includes concepts about 

topography, networks, buildings, and places, while the application domain ontology 

gathers all application dependent concepts, such as traffic management or bird migration. 

This seems to be a first step to include semantic information of patterns, but needs 

further investigations for generic, and application-dependent, semi-automatic 

computation of trajectories (Yan et al. 2008). Another way to include semantic 

information is by modeling events (Hornsby Stewart and Cole 2007; Worboys 2005; 

Worboys and Hornsby 2004). Hornsby and Egenhofer (2000) address the integration of 

time into the geospatial domain by modeling specifically the changes of dynamic 

phenomena. A classic model for the integration of events for spatio-temporal data is 

WorboyÕs and HornsbyÕs geospatial event model (GEM) (Worboys and Hornsby 2004). 

The GEM adds geospatial objects, events and their settings to existing object-oriented 

modeling approaches in the geospatial domain and allows queries explicitly related to 

events. Worboys and Hornsby (2004) demonstrate that this approach leads to more 

powerful modeling representations of dynamic geospatial phenomena. Ontology-based 

and event-based approaches are two promising starting points to include the necessary 

semantics of movement trajectories.  

Klippel and other authors are looking at the conceptualizations of events in the 

geographic domain (Klippel 2009; Klippel and Li 2009; Klippel et al. 2010). Klippel et al 

(2007) identify to what extent formal models of topological relations are able to 

characterize human concepts of changing relationships between regions. This framework 

of geographic event conceptualization is formally assessed with empirical experiments 

where the movement of two regions (visualized by animation) is characterized through a 

path in a conceptual neighborhood graph. Their results suggest that changes in 
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topological relations are not enough to characterize the cognitive conceptualization of 

moving regions, and that additional factors are important for the conceptualization of 

movement, namely the identification of a region, the concept of a region, and the overall 

dynamics of the involved entities (Klippel et al. 2007). In order to extend their findings, 

Klippel and Li extend this research by investigating, which cognitive invariants are salient 

in the conceptualizations of movement behavior (Klippel and Li 2009; Klippel et al. 

2010). The authors present evidence that size matters for the conceptualization of 

movement patterns (Klippel et al. 2010). Their findings are important stepping-stones to 

identify how events are conceptualized in order to provide a sound theory for analysis of 

spatio-temporal data. Similarly, the goal of the cognitive conceptual framework is to 

identify how spatio-temporal data is conceptualized in visualizations of movement.  
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In summary, research in movement data storage and analysis has significantly moved 

forward since the inception of HŠgerstrandÕs time geography. This review has briefly 

highlighted computer-based exploratory, spatio-temporal data analysis approaches as 

powerful means to identify changing geometric characteristics of movement patterns, 

including representations of movement trajectories. However, until now these 

approaches have only marginally dealt with the semantic aspects of movement 

information, typically provided by the research goals and tasks, the environmental 

context, and the human investigating this information. I assume that the analysis of 

spatio-temporal phenomena cannot be done in an isolated fashion, focusing on the 

geometrical analysis of patterns alone (Shipley et al. 2010), but needs to include the 

context of the moving object (as described in Section 1.1). The context of the object 

includes the environment that the objectsÕ movement takes place, the relation to other 

moving objects, as well as the spatial and temporal scale of the object. All these relations 

are an important context of the moving object and relations are a focus of human 

perceptual processes (Shipley et al. 2010). I therefore hypothesize that the integration of 

context facilitates users understanding of movement patterns. 

While prior research has made significant advances integrating large, multi-dimensional, 

spatio-temporal data into query-able databases that can also be explored graphically, 

movement pattern analysis still seems to rest mainly at the descriptive (i.e., geometric) 

level. If the ultimate goal of movement analysis is to overcome the gap between pattern 

and process, the human component needs to be better integrated into the dataÐsystemÐ
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human nexus of movement object analysis. The event analysis approach mentioned 

earlier is a promising start, as events seem to be useful space-time units of human 

cognitive processing, as we will discuss in a later section on the cognitive perspective.  

Cognitive principles can also be included into movement data analysis by presenting the 

results of the computation to a user with meaningful displays. Particularly interactive 

interfaces facilitate inference and decision-making of the analyst, and leverage the 

humanÕs outstanding pattern recognition capabilities for analysis. In the next section, I 

will therefore take a closer look at the visualization perspective, focusing on 

geovisualization and visual analytics approaches, including respective tools for studying 

dynamic phenomena. 

!
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Dynamic geographic processes, such as movement, have not only gained increasing 

attention in GIScience, but also in cartography and visualization (Yattaw 1999). Well 

before the computer age, cartographers have been representing moving objects, such as 

migration of humans and animals with (static) graphic displays. One common example is 

the well-known and ubiquitous flow map (Bertin 1983; Tobler 1987). According to Tufte 

(1983) one of the most compelling space-time stories ever told graphically is MinardÕs 

(1869) multivariate flow map of the French army during their Russian campaign 1812-

1813. Despite better computing powers, the integration of time into visualizations has 

become a key challenge (Andrienko et al. 2010). Vasiliev (1997) provides a review of 

spatiotemporal phenomena and the type of representations that have been used so far to 

represent different categories of time, i.e. moments, duration, structured time, etc.. 

Taking advantage of computer processing power and interaction mechanisms, Phan et al. 

(2005) have revisited classic flow maps, and have created interactive flow map layouts 

with hierarchical clustering techniques. Several Researchers (Hedley et al. 1999; Kraak 

2003; Kwan 2000; Kwan 2004; Kwan et al. 2003) have extended yet another geographic 

classicÑthe HŠgerstrand space-time prismÑto depict travel behavior with 3D space-

time paths using the advanced graphics capabilities of GIS. An example is KwanÕs space-

time aquarium, shown in Figure 6 (Kwan 2004). This space-time aquarium represents 

individual movement trajectories across space (x-y plane) and time (z-dimension). The 

biggest advantage of this kind of representation is that time is explicitly modeled through 
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the third dimension, and when viewed in an interactive system, the 3D space can be 

explored from all angles. However, this representation also has its disadvantages, 

specifically that large amounts of data can lead to visual clutter and too many trajectories 

easily overcrowd the representation; an effect which was confirmed in interviews with 

experts dealing with moving point data. The space-time metaphor breaks down and the 

movement behavior is difficult to determine.  
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The space-time cube approaches seem to be effective at highlighting similarity in 

movement trajectories, and thus collective behavioral patterns of individuals (i.e., space-

time clustering), but querying and filtering might be better achieved with multiple linked 

views, for instance by integrating parallel coordinate plots into space-time cubes to allow 

for interactive exploration of activity travel behavior (Ren and Kwan 2007). It is also 

common to allow the selection of one time stamp and represent this data item on a map, 

in a parallel coordinate plot, and a space-time cube at the same time (Blok 2000). In 

doing so, Ren and Kwan (Ren and Kwan 2007) discovered interactions between 

movement behavior of humans in the physical and the virtual world.  
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The explicit modeling of time can be done through aggregating the data to observe 

collective characteristics. Another useful approach is the selection of data (Chen et al. 

2008), which is often done through multiple linked views in one display. Aigner et al 

(2008) emphasize not only the importance of choosing visualization techniques 
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according to the data characteristics, but also of the task the analyst has to perform. 

Aigner et al (2008) differentiate between linear and cyclic time, time points and intervals, 

and ordered and branching time in their visualization approach, reflecting the space-time 

characteristics proposed by Vasiliev (Vasiliev 1997). Time series are one of the most 

common data types (Lin et al. 2005) in time-oriented data. Visualizations of time series 

are approached through timeboxes (Hochheiser and Shneiderman 2001), calendar-based 

views (van Wijk and van Selow 1999) and spirals (Weber et al. 2001) and specifically try 

to show the time instance when a process or movement has happened. Other approaches 

for the visualization and discovery of patterns in large time-series data are VizTree (Lin et 

al. 2005) and  importance-driven visualizations, in which the user classifies the 

importance of specific data characteristics, i.e. specific attributes, or time instances (Hao 

et al. 2005). A more detailed summary on these methods can be found in Lin et al. (Lin et 

al. 2005). These highlighted tools have mainly dealt with the explicit integration of time 

and therefore identify when changes happen in data, but the analysis of movement data 

deals with the combination of space and time, asking when and where changes of 

movement behavior are happening.  

Important criteria for visualizations of time series data are identified by Aigner et 

al.(Aigner et al. 2008). Important criteria for representations of dynamic phenomenon still 

have to be found. Even more complex for geovisual analytics is the representation and 

exploration of time-oriented data and specifically, dynamic phenomena, such as 

hurricanes, human and animal movement behavior. The sufficient integration of space 

and time data is therefore a key challenge for visualizations and is so far approached 

through aggregation, abstraction, and sophisticated computational approaches, such as 

Self-Organizing Maps (Andrienko et al. 2010). At the core of these visualizations lies the 

interaction with the display that allows the user to explore the data, but it remains to be 

seen if these approaches are actually cognitively inspiring. The next paragraph therefore 

deals with approaches that more specifically support usersÕ cognitive abilities.  
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A step even further towards cognitively supported exploratory visual data analysis are 

visual analytics approaches (Thomas and Cook 2005). Visual analytics is defined as the 

science of analytical reasoning facilitated by interactive visual interfaces (Thomas and 

Cook 2005). According to Keim (2006) the basic idea of visual analytics is to visually 

represent information, allowing the human to directly interact with it, to gain insight, to 
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draw conclusions, and to ultimately make better decisions. Visual analytics tools typically 

operate under ShneidermanÕs visual information seeking mantra, a process of Òoverview 

first, zoom and filter, then details-on-demandÓ to extract relevant information from the 

data (Shneiderman 1996). Another advantage of visual analytic tools is that they can also 

be used to display and disseminate findings to a larger audience, e.g., decision-makers and 

stakeholders.  

Geovisual analytics tools have gained increased attention as a complementary method to 

automated data mining for exploring and analyzing large geographic data sets (Andrienko 

et al. 2008a). Several well-known geovisual analytic tools, such as CommonGIS 

(Andrienko et al. 2007), GeoVISTA Studio (Gahegan 2001) or Improvize (Weaver 2008) 

have recently been specifically extended to help analysts visually explore and mine very 

large moving point datasets. Robinson et al. (2005) propose the Exploratory Spatio-

Temporal Analysis Toolkit (ESTAT) that combines scatterplots, parallel coordinate plots, 

bivariate maps, and time-series graphs for a more effective exploration of these large data 

sets with the contention that multiple visualizations help to extract commonalities and 

differences among movement patterns. A common characteristic of these highly 

interactive visualization toolkits is the emphasis of human involvement in the exploration 

process of spatio-temporal data. The visual inquiry toolkit is based on the previously 

mentioned visualization mantra of overview first and details on demand, to help users 

find novel and relevant information by employing both cartographic, and computational 

methods (Chen et al. 2008). These authors (Chen et al. 2008) suggest that their pattern 

basket approach specifically helps users in off-loading cognitive effort, and extending 

their memory capacity by offering them a digital basket where discovered potentially 

relevant patterns can be stored during the visual exploration process, and retrieved later, 

when needed. What is still unclear, however, is whether these approaches indeed 

facilitate pattern recognition as is commonly claimed (Andrienko et al. 2010). 
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Researchers declared that a better understanding of perceptual-cognitive tasks in the 

context of visualization has to be attained and supported through empirical evidence 

(Chen 2005). MacEachren and Kraak (2001) reported that cognitive and usability issues 

need to be addressed for a systematic improvement of visual analytics tools. This view is 

supported by Fuhrmann et al. (2005) who conclude that user testing has to be carried out 
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to improve visual analytics tools early on in a user-centered design process, similarly to 

the design processes in human-computer-interaction research.  

Two common visualization approaches are used for the representation of spatio-

temporal dynamic data, namely animations and multiple static maps. A current debate 

focuses on the cognitive issues with these different kinds of representations. The aim is 

not only to see if visualizations work, but also why they work. Both, static maps and 

animations have their advantages and disadvantages. Tversky and Bauer Morrison (2002) 

propose that animations are often too complex and too fast to be accurately perceived. A 

specific problem is that events and movement are perceived as discrete steps rather than 

continuous motion, in which an animation does not represent the internal structure of 

humans (Tversky and Bauer Morrison 2002). In a study on meteorology forecasts Bogacz 

and Trafton (2005) also observed that participants preferred the static over the animated 

displays. Lee and Klippel (2005) provide evidence with a similar advantage of static over 

animated displays and got similar results for display preferences of air traffic controllers. 

Conversely to these findings, other researchers argue that visual analytics displays should 

congruently depict the concept of time and change with changing displays over time as 

with animations (Fabrikant et al. 2008b; Shipley et al. 2010), as it seems obvious that 

humans will have less difficulty comprehending complex dynamic processes through 

well-designed dynamic displays (Tversky and Bauer Morrison 2002). The utility of 2D 

and 3D displays are equally debated with the goal to understand which representation 

better fits to the internal representations of spatio-temporal processes (Smallman et al. 

2001). Another major issue for the exploration and analysis of movement data is the 

concept of cognitive load. Cognitive load is described as the amount of cognitive 

resources needed to perform a given task (Wickens and Hollands 1999). Harrower (2007) 

reviews the cognitive load theory and notes that the effectiveness of a computer interface 

or visualizations is partly dependent on effectively managing cognitive load. These 

concepts therefore have to be considered when designing cognitively plausible 

visualizations of movement. In the next section, I will take a look at research that aims to 

integrate cognitive principles, especially through the design of event-based visualization 

approaches. 
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Event-based approaches, as reviewed earlier, also seem to be a promising research 

avenue to construct cognitively inspired and perceptually salient visual displays for the 
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exploration of spatio-temporal data. GeoTime  (Kapler and Wright 2005), for example, 

visualizes events in a three-dimensional cube, and provides event aggregation techniques 

to analyze when and where processes occurred. Events are defined by the user and are all 

actions that can be described, such as Òthe bear fished at Lake Ontario at 1500 h on July 

8th, 2003Ó. The time stamp of the event is safed together with the location information. 

The user has later the possibility to query the event. In GeoTime the event is visualized 

through a little pin (see Figure 7), as opposed to non-event based visualizations where 

only the trajectory would be represented.  
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The EventViewer framework introduced by Beard et al. (2007) supports the user with a 

combined display, in which users can compare event patterns across space, time, and 

theme at multiple granularity levels. Aigner et al. (2008) let users define their specific 

event types, allowing events in the spatial, temporal or attribute dimension. These 

authors suggest that user centered analysis should be supported through a three-step 

process in which users specify the event, detect the event, and finally depict the event. 

These few approaches are promising, because they not only provide user interactivity, 

but also combine it with humanÕs conceptualization of spatio-temporal processes as 

successive events. Following Yattaw (1999), the event-based approach seems useful, 

because it also allows the user to understand the individual spatial and temporal 

components of each event separately; a pre-exquisite to understanding processes and 

relationships between movement patterns. Event-based approaches therefore have the 

potential to understand the actual movement behavior (i.e. process) and not just when 

and where changes in movement have happened.  
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In summarizing previous research within the visualization perspective, I find that many 

advanced and highly interactive visual analytics tools have been developed to explore and 

make sense of large space-time data sets. Arguably, geovisual analytics tools have the 

potential to provide opportunities for spatio-temporal exploratory data analysis, to reveal 

space-time patterns, and hopefully, to confirm expected, and discover unexpected 
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patterns and relationships buried in massive moving object datasets. The contended 

advantage of geovisual analytic tools is the combination of computational methods with 

the outstanding human capabilities for pattern recognition, imagination, association, and 

analytical reasoning (Andrienko et al. 2008b). A survey of the visual analytics literature 

has shown that mostly the developers themselves use their own tools to explore toy 

datasets, and to exemplify coded solutions and display characteristics. To the best of my 

knowledge, there is no empirical evidence that the developed solutions are indeed 

helping humans (other than the developers themselves) to more efficiently explore large 

datasets, or to support them in making better decisions. In fact, it is still unclear how 

these information rich display designs and interactive toolkits effectively combine 

humanÕs pattern recognition abilities with computational models, and if they support 

human space-time data exploration, as often claimed (e.g.Beard et al. 2007; Fabrikant et al. 

2008a). Fabrikant and Skupin (2005) contend that visual analytics tools will be more 

useful if they not only consider how humans perceive and process information, but also 

augment peopleÕs visualization capabilities for complex spatio-temporal reasoning and 

problem solving. 

Understanding perceptual and cognitive tasks in the context of visualization has been 

under researched so far, and empirical evidence of success is still scarce (Chen 2005) 

(Fabrikant and Lobben 2009). The congruence principle states that well designed 

external representations, such as graphic displays, show a natural cognitive 

correspondence in structure and content with the desired structure and content of the 

internal (mental) representation (i.e., the appropriate analytical inference). Event-based 

approaches, as highlighted in the data perspective and the visualization perspective, are 

possibly one example where the congruence principle works, because events are seen as 

units that structure our understanding of spatio-temporal processes. In the next section, I 

present the cognitive perspective, and review relevant work on spatio-temporal 

reasoning, including event perception and conceptualization that might provide the 

missing link to prior work in moving object data analysis and visualization.  
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In order to understand how humans understand spatio-temporal data and why certain 

visualizations work better than others, we have to understand how our mind reasons 

about space and time. One appropriate theoretical construct to study movement 

behavior from a cognitive perspective is image schemata. Image schemata rely on a small 

set of experiential concepts and are cognitive structures that help us make sense of our 

perceptions and actions (Lakoff and Johnson 1980). Image schemas derive from our 

bodily experiences, e.g., we have to bend down to pick up objects and look up to see the 

sky, and these bodily experiences reflect in the image schema, in this case Òup/downÓ. 

Lakoff and Johnson (1980) identified eight spatial image schema, e.g. up/down, 

front/back, left/right, near/far, center/periphery, contact, straight, and verticality, as well 

as the locomotion schema, e.g., momentum or source/path/goal. Image schema are the 

source domain for metaphoric mapping, i.e. abstract metaphors that we use in everyday 

language and thought can be traced back to our conceptual representations, namely 

image schema (Evans and Green 2006). The conceptual representations of our bodily 

experiences, i.e. image schema, are reflected in our semantic structure. Language is 

therefore a conventional mean to understand and decode our conceptual structure. 

Metaphors are also used to relate to our underlying system of thought. Metaphors are 

used in language, and are also commonly used to design visual interfaces. Computer file 

systems, for example, are typically represented metaphorically as an office filing system, 

containing documents organized in folders. The metaphorical organization of folders and 

documents relates to the container image schema (Norman 2002).   

One important image schema for behavioral movement data is the source-path-goal 

schema described by Lakoff (1987). Its structural elements are a starting point (source) 

and endpoint (goal) with a sequence of locations connecting the source and the 

destination (path) (Lakoff 1987). This image schema is particularly useful for 

understanding spatio-temporal data, especially movement data, as the visualization of 

movement trajectories also has a start point, an end point, and change points in-between. 

Time, as one component of the data, is conceptualized as space - as we will see in the 

next paragraph - and emerges from our experience with change, which involves motion. 

Complex events, such as the movement behavior of animals or humans, can be 

understood with this image schema and thus has been studied with empirical event 

experiments (Shipley and Maguire 2008). The experiments of this thesis also focus on 
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how humans understand visualizations of movement trajectories, e.g. assessing the 

relevance of context to identify certain change points in the movement trajectory, and are 

particularly relevant to identify useful metaphors for cognitively inspired visualizations.    

Reasoning about space and time is also studied from a linguistic point of view. Linguists 

refer to the fact that we use spatial metaphors when we talk about time, such as Òthe war 

is behind usÓ (Gentner et al. 2002). Language often connects space and time by 

conceptualizing static objects as if they were moving, e.g. the wall runs from the ridge to 

the valley (Talmy 1983). Casasanto and Boroditsky (2008) examined if the metaphoric 

use of space for time is not only limited to language or language processing, but also 

whether it extends beyond the domain of language. Their findings suggest that the 

relationship between space and time does not only exist in language, but also in our basic 

representations of distance and duration (Casasanto and Boroditsky 2008). The authors 

conclude that our mental representations of time may be grounded on our 

representations of physical experiences in perception and action. Two concepts are 

differentiated, namely ego-moving and time-moving metaphors, to organize and 

structure the more abstract domain of time with the more familiar domain of space 

(Boroditsky 2000; Gentner et al. 2002). In analogy to the understanding of a spatial layout 

through prominent features in the environment (i.e. landmarks), the understanding of the 

spatio-temporal domain is bounded to events, i.e. prominent features of change. This is 

comparable to the spatial cognition concepts of allocentric and egocentric frames of 

reference in the spatial domain. In egocentric frames the spatial information is made in 

reference to the body and therefore relates to the ego-time concept. Allocentric frames 

of reference use landmarks, i.e. external frames (Paillard 1991) and can be related to the 

time-moving concept. These findings present further evidence that events can serve as a 

cognitively understandable unit and are thus useful in GIS and visual displays of 

movement. Event points, therefore, have to be made perceptually salient in visual 

displays of movement, similar to landmarks, as perceptually salient features in the 

environment. Therefore, I will now review events from a cognitive science perspective 

and the respective research done on events.  
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Shipley and Zacks (2008) demonstrate that events are things that happen with a reference 

to a location in time. Several authors (e.g.Kurby and Zacks 2008; Zacks and Tversky 

2001) define an event as Òa segment of time at a given location that is conceived by an 
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observer to have a beginning and an endÓ. Events are mental units and are considered as 

our building blocks of the temporal realm (Schwan and Garsoffky 2008; Shipley 2008). 

Although events are seen as units, analogies can be drawn between events and objects 

(Casati and Varzi 2008; Schwartz 2008; Shipley 2008; Shipley and Maguire 2008). While 

objects belong to the spatial dimension without a temporal frame of reference, events are 

set in the temporal dimension (Casati and Varzi 2008; Shipley 2008; Tversky et al. 2008) 

and occur when objects change or interact (Shipley 2008). Although events are defined 

through their temporal dimension, they do have a spatial dimension as well. This means 

they can change their spatio-temporal position (Tversky et al. 2008) and allow a co-

location in space (Casati and Varzi 2008).  

Event segmentation is an important process that helps humans to partition and store 

events in cognitively manageable units (Kurby and Zacks 2008; Schwan and Garsoffky 

2008). Segmentation features can be the change of location (Schwan and Garsoffky 

2008), or movement changes including the acceleration of objects (Tversky et al. 2008). 

Event segmentation is influenced by goal-directedness (Schwan and Garsoffky 2008; 

Zacks 2004), or familiarity (Schwan and Garsoffky 2008). Several authors suggest that 

event segmentation is influenced by cognitive top-down processes, such as knowledge of 

goals and causes, as well as bottom-up processes that are perceptual (Tversky et al. 2008; 

Zacks 2004).  

The boundary of an event is the most crucial part of an event because it contains the 

most important information (Schwan and Garsoffky 2008; Shipley 2008). Chelappa et al. 

(2008) mention that abrupt changes in the transformation of objects should be associated 

with boundaries of events. Directly related to the development of visualizations of 

spatio-temporal data (and ultimately also our framework) is that experiments has been 

conducted with the goal to identify potential perception features of event boundaries by 

focusing on the motion of individual objects in space (Shipley and Maguire 2008; 

Tversky et al. 2008; Zacks 2004). These authors used an objectsÕ movement path for 

several reasons: First of all, the concept of path is fundamental to event classification in 

language. Secondly, mathematical tools are available for characterizing paths, and thirdly, 

path features are most likely used by observers to segment movement events (Shipley 

and Maguire 2008). Moreover, empirical research has been established to understand if 

object and event segmentations relate, and a high correlation was found between object 

and event boundaries (Shipley and Maguire 2008). A detailed review on events from a 

visual perception perspective is found in Shipley and Zacks (2008). It includes the 
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development of event understanding, perceiving and segmenting events, as well as the 

internal representation and memory of events. 

The segmentation process is typically measured through the setting of perceptual and 

cognitive breakpoints, i.e. where and when humans perceive the boundary of an event 

(Newtson 1973; Newtson and Engquist 1976; Schwan and Garsoffky 2008; Tversky et al. 

2008) by segmenting movies. Here again, the process of event segmentation is 

comparable to the process of object segmentation. While visual processes focus on the 

boundary of objects, Shipley (2008) focuses on the temporal regions near the points of 

change for events. Event segmentation can be less or more fine-grained, where a more 

fine-grained segmentation indicates a higher density of event boundaries and therefore a 

higher amount of extracted information (Schwan and Garsoffky 2008). Events can also 

be subdivided into meaningful units, creating events and subevents (Kurby and Zacks 

2008). A more detailed review on human segmentation process of events can be found in 

Kurby and Zacks (2008).  

Although events and objects are clearly different, the possibility to draw analogies from 

events to objects leads to the potential to model and analyze events with GISystems. It is 

specifically important to note that the Zacks and Tversky (2001) conclude that the spatial 

and the temporal component complement each other when reasoning about events. 

Consequently, it suggests that the usage of event-approaches in the data and visualization 

component is potentially valuable, as we will see in the summary of this section. 

!
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The cross-disciplinary review of previous work on moving object data storage, 

representation, analysis and visualization suggests that only a weak link exists to current 

cognitive and perceptual research that can be integrated into current visual-analytic 

approaches to better explore and make sense of large amounts of movement data. This 

might not only hinder significant advances in this emerging research field, but also seems 

particularly problematic when trying to explain and predict behavioral movement 

patterns. Ideally, movement behavior and its analysis are understood as a cycle. Figure 8 

represents this cycle. Movement behavior can be measured and captured in data for 

analysis, which in turn is presented to analysts through visualizations of movement. 

These visualizations should be depicted such as to facilitate cognition and perception of 

the pattern, allowing the analyst to identify patterns of movement behavior.  
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I claim that visualizations of movement behavior are not yet established in a cognitively 

inspired way, as the link between visualizations and human perception and cognition is 

still weakly defined. I therefore propose a cognitive conceptual approach for movement 

representations and depictions that includes empirically validated knowledge on how 

humans perceive and understand movement behavior depicted in visual analytics 

displays. Chapter 3 details the conceptual framework of movement and explains why 

human subject experiments are a suitable method for identifying how humans 

conceptualize spatio-temporal patterns.  

!
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The proposed conceptual framework aims at improving visualizations of moving point 

data for more effective and efficient exploration and decision-making. It is specifically 

strengthening the weak link between cognition and perception and visual displays 

(compare with Figure 9). Various researchers have already suggested that an appropriate 

starting point for constructing effective and efficient visual analytics tools is to frame 

developments within context of cognitive theories, long-standing empirically evaluated 

design principles, and related empirical studies on visual displays (Fabrikant and Lobben 

2009; Slocum et al. 2001). As introduced earlier, I propose three pillars for our framework 

on moving object research linking collected movement data (i.e., data perspective) with 

human inference and decision making (cognitive perspective) through cognitively 

inspired visual analytics displays (visualization perspective), see Figure 9. All perspectives 

have top-down and bottom-up components. The top-down components include theories 

and principles from existing research. The bottom-up components consist of user-

oriented approaches.  

The taxonomy of movement patterns is to date one of the main contributions of the 

bottom-up perspective of the data perspective. The cognitive perspective is dominated 

by human subject experiments, such as the assessment of the influence of a moving 

objectsÕ context, or the context of the analyst.  The cognitive perspective links the data 

and the visualization perspective to show that the user has to be supported by cognitively 

inspired visualizations. Visualizations are not alone determined by their data structure, 

but rather progress through a filter with cognitive aspects. The visualization perspective 

is characterized through the design and evaluation of visualizations of movement. The 

visualization perspective also has a backward link to the cognitive perspective, which 

symbolizes that designing cognitively inspired visualizations of movement is an iterative 

process, and new findings from cognitive research have to be assessed and integrated 

continuously.  
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A movement pattern can be made of a single, basic movement parameter, e.g. change of 

direction, or combinations of movement parameters, e.g. change of direction and change 

of speed. Certain combinations of generic parameters of movement data (i.e. distance, 

direction, speed, velocity, position, interval, and distance) form a movement pattern 

(Dodge et al. 2008). Such patterns can be organized in a taxonomy of movement patterns 

as shown in Figure 10 (Dodge et al. 2008)1. The taxonomy distinguishes generic and 

behavioral movement patterns. Generic movement patterns may be found in any form of 

movement from any kind of moving object, such as animals or avatars. Generic 

movement patterns can be classified on different levels of complexity, namely primitive 

and compound patterns, as shown in Figure 10. Primitive patterns involve only one 

moving object (e.g. incidents and constancy), while compound patterns are made up of 

several moving entities and their inter-object relations (e.g. trend-setting, encounter). In 

contrast, behavioral patterns explain the specific behavior of particular moving objects.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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Since all movement patterns are generated through behavior, the term behavioral patterns 

(as opposed to generic patterns) is not ideally coined by Dodge et al. (2009). It would be 

better to use the term semantic patterns to reflect that these patterns are not just a mere 

combination of movement parameters, but that these patterns have meaning as they are 

only applicable to a particular behavior of a particular moving object. Semantic patterns 

are therefore dependent on the context of the moving object. In the remainder of the 

thesis I keep the term behavioral patterns though to avoid confusion, although I think 

semantic pattern would be more suitable. 

As discussed in Chapter 2, a lot of research is dedicated to formalize generic movement 

patterns. Expressed formally, Laube et al. (2005) propose that a movement pattern P 

describes a sequence (S) of motion attributes (Am) over time (1). A pattern P at a 

particular instance of time describes an incident I of a set of motion attributes (Am) in 

time (2).  
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  P=S(Am) (1) 

  P=I(Am) (2) 

 

Collected movement data can be structured and stored as proposed, but the question 

remains how people perceive and understand data patterns, i.e., stored in a database, or 

visualized in a display, and what resulting spatio-temporal inferences users can make 

from these patterns (i.e., see cognitive perspective in Figure 9). Following a psycho-

physical framework (Stevens 1957), the pattern P in a stimulus-response relationship (3), 

is described by the following psychophysical function: 

 

  Pdata stimulus=kPhuman response
(n)  (3) 

 

From this formula follows, that only if the exponent (n) equals 1, an existing pattern (P) 

(including a constant k) is indeed perceived as the data pattern without information loss 

or distortions of any sort. Considering previous research on event perception and 

understanding, we contend that cognitively inspired visual analytics displays are necessary 

to minimize potential information loss, as they aim at supporting effective and efficient 

pattern perception and pattern recognition. The effectiveness and efficiency of a visual 

display is dependent on various human centered aspects, such as usersÕ individual 

differences (e.g., spatial visualization skills, visual acuity, etc.), previous knowledge and 

training, usage contexts including tasks and goals, and the visual characteristics of the 

display themselves. I therefore propose that cognitively inspired representations of 

movement data also integrate a perception and cognition component into the basic 

ontological pattern functions described in the taxonomy of movement patterns (Dodge et 

al. 2008). A movement visualization V m therefore includes a cognition C, perception (Pe), 

and pattern (Pa) component as shown in (4): 

 

  V m=CPe + Pa  (4) 

 

The taxonomy of movement patterns reflects that researchers have mainly worked on 

various generic movement parameters (i.e., position, distance, direction, etc.) of the 

pattern function (Pa) (Dodge et al. 2008). In contrast, the behavioral patterns have not 

received much attention and have not been formalized in detail yet. Especially semantic 
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aspects, such as the context of the moving object (i.e. goal and task directed movement, 

influence of other moving objects), or characteristics of the moving agent (e.g., modality 

of movement, etc.) have not been considered yet. Furthermore, the cognitive and 

perceptual aspects of the researcher trying to make sense of the resulting pattern have 

also hardly been researched. From this follows my approach to identify the various 

components influencing the cognition component C (in 4). 
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In order to get a more in-depth understanding of the potential factors that could be most 

relevant for the analysis of spatio-temporal data (and thus need to be captured in the 

cognitive function), we need to specifically address the user working with movement data 

(see center part of Figure 9). The top-down knowledge of the cognitive perspective are 

existing theories and principles from cognitive science, and this thesis specifically draws 

on existing research on events and event segmentation. This dissertation tries to 

contribute to the bottom-up approach of the cognitive perspective by using qualitative 

interviews, controlled human subject experiments, and eye movement research.  

 

The key objective of the cognitive perspective is to develop a sound theoretical 

foundation based on empirical evidence how humans process spatio-temporal 

information in visual displays of movement, and thus getting an understanding on how 

humans understand the complex and multidimensional nature of the data. From expert 

interviews (described more detailed in Chapter 4.1), we identified three major candidates 

for the cognition component in Equation (4), namely, previous knowledge (familiarity), 

training, task (goal-directedness), and scale that guide the analysis of movement data 

beyond geometric parameters. These factors also correspond well with the factors 

cognitive research has shown to influence human event segmentation (Schwan and 

Garsoffky 2008; Zacks 2004), as reviewed above. Previous knowledge has been the major 

driving force to analyze movement patterns for the interviewees and is part of the 

analystsÕ context. One important factor to assess is how the analystsÕ context, such as 

their previous knowledge, is influenced by the visual representation of the moving 

objectÕs context, e.g. the environment in which the movement takes place. Context 

information is therefore a key concept, which helps users to add meaning to data and 

visualizations. The interviews have highlighted the importance of context information 
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about the moving object, but I briefly state two other reasons, why context should be 

considered in our empirical investigations.  

Literature from context-awareness research also emphasizes the importance of including 

Òrelevant information for the userÓ (Dey and Abowd 2000), which is in turn dependent 

on the users geographic context. The issue of context-awareness has been well 

recognized in computer science, especially for mobile applications (Dey and Abowd 

2000; Schilit et al. 1994; Schmidt et al. 1999). In mobile computing, a system is context-

aware if Òit uses context to provide relevant information and/or services to the user, 

where relevance depends on the users taskÓ (Dey and Abowd 2000). This statement 

should not only be essential for mobile application, but also to visual analytics 

applications. However, context awareness is so far lacking in the design of visual 

analytics tools, in particular for space-time data.  

Another reason why I considered context as an important factor is the differentiation of 

generic and behavioral movement patterns in the taxonomy of movement patterns. 

Generic movement patterns rely on the identification of basic, generic movement 

parameters alone. Movement parameters can answer questions where changes in 

movement trajectories from moving objects have happened, what kind of change has 

happened in the trajectory, and when changes in the trajectories of moving objects have 

happened. The questions where, when, and what therefore only correspond to the 

movement trajectory, and not to the actual geographic location of an object. In contrast, 

behavioral movement patterns additionally need context information to the basic 

movement parameters to employ meaning to the represented movement patterns (see 

Figure 11) and to specifically answer why movement behavior is happening.  

!
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Consequently, I have first given attention and initially manipulated visual representations 

of the moving objectsÕ context in my human subject experiments (LautenschŸtz 2009; 

LautenschŸtz 2010), to demonstrate the importance of contextual information about the 

moving object in visual displays of movement patterns (as mentioned in Chapter 1.2). 

Throughout this thesis, I am therefore testing the two following hypotheses statements 

(HS1 and HS2):  

 

HS1: Generic movement patterns can be identified through the identification of basic movement 

parameters, such as speed, distance, direction, and velocity and need no context information of 

the moving object to understand what movement pattern is visible.  

 

HS2: Users need context information of the moving object to correctly identify behavioral 

patterns and understand why the movement has happened.  

 

Two definitions are used throughout the experiments to manipulate context information 

in the visual displays. The first experiment is inspired by context-awareness literature, 

where context is defined as Òrelevant informationÓ (as described above). I consider 

relevant information of the object as information regarding the kind of moving object, 

i.e. humans, and the objectÕs behavior, i.e. bike movements. In the second and third 

experiment, I defined context as the environment in which the movement takes place, i.e. 

the geographic context of the moving object, such as high alpine terrain for ibex. The 

experiments are guided by the following overall research question, as mentioned in 

Chapter 1.2: 

 

What is the effect of context information on the exploration and analysis of movement data? 

 

More specifically this research question is split into two objectives: The first objective 

aims at identifying if context information of the moving object influences the 

identification of the moving agent and the designated movement behavior. The second 

object aims at identifying to what extent context information of the moving object 

influences the identification of basic movement parameters, e.g. speed, velocity, or 

duration.  

Once we have identified the key components of humansÕ understanding of movement 

and events, we are better equipped to match the external visual representations, i.e., 
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cognitively inspired visual analytics displays of movement data to the internal (mental) 

representations of humans. The derived knowledge from user testing could then be 

integrated into the design process of generating effective and efficient visual analytics 

displays of movement data, which in turn will enable humans to make better spatio-

temporal decisions. 

!
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The visualization perspective (right part in Figure 9) depends on long-standing design 

principles and practice, as well as additional information from ongoing and future 

empirical evaluations. Certainly a good start for constructing effective and efficient visual 

analytics displays are the design principles and details on how to transform spatio-

temporal data into visuo-spatial forms, outlined in various standard cartography text 

books (e.g.Slocum 1998).  BertinÕs (1983) system of visual variables, and later extensions 

into the dynamic domain by DiBiase et al. (DiBiase et al. 1992), are prime candidates also 

for movement visualizations.  

We have seen earlier that debates still exist on the adequacy of certain representation 

types for (movement) visualization, i.e., with respect to the appropriate dimensionality 

(2D or 3D) and/or the level of inclusion of dynamics (i.e., animation, interaction, etc.). 

The framework therefore has to carefully consider appropriate design principles, also 

supported by empirical evidence, to show a coherent representation of movement. The 

appropriate selection of the visual variables for movement displays is also crucial, as 

some variables are perceptually more salient than others (Garlandini 2009; Garlandini 

and Fabrikant 2009). In cognitively inspired visualizations, thematically relevant 

information should be rendered perceptually most salient for effective and efficient 

spatio-temporal inference and decision-making (Fabrikant et al. 2010).  

Current state-of-the-art movement pattern research, as we have seen earlier, focuses 

mostly on the automated analysis of geometric properties and features, and the extraction 

of movement patterns by means of algorithms (Dodge et al. 2009; Laube et al. 2007a). 

However, we do not know whether the geometric properties extracted by algorithms 

match humansÕ internal representations of movement and adequately capture the 

semantics of the movement behavior. For example, my interviews with experts suggest 

that the inclusion of contextual information is especially critical for the analysis of 

behavioral movement patterns. Visualizations of movement data should therefore not 
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only focus on geometric properties (i.e., paths and configurations), but also include 

adequate depiction of context information (i.e., environment, goals, tasks, spatio-

temporal scale, etc.). Event-based approaches, as highlighted earlier, would be a good 

starting point. In order to match humanÕs conceptualization of events, event points 

should be made perceptually salient, similar to landmarks as salient features in the 

environment.   
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The conceptual framework, as discussed in the previous section, consists of a top-down 

perspective, i.e. existing theories and principles, and a bottom-up perspective, e.g. 

empirical investigations. In this chapter, I discuss the contributions to the bottom-up 

perspective within the cognitive perspective of the conceptual framework by using 

qualitative interviews, and controlled human subject experiments employing eye 

movement research. This chapter introduces the methods used throughout this thesis. 
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A systematic empirical evaluation on how context influences inference and decision-

making with visual analytics displays is a key requirement for the development of 

cognitively inspired visual analytics tools. The effectiveness and efficiency of visual 

analytics tools has gained recent interest in GIScience (Cšltekin et al. 2010; Cšltekin et al. 

2009; Fabrikant et al. 2008a; Fuhrmann et al. 2005; Li et al. 2010). Demsar (2007) 

developed a methodology to perform usability evaluation with visual analytics tools as a 

key step to improve visual analytics tools. Other empirical studies investigate with the 

effectiveness of visualizations when visual variables are manipulated (Fabrikant et al. 

2010) as a key factor for cognitively inspiring visualizations. The exploration of spatio-

temporal data, specifically movement, with visual analytics tools has rarely been 

empirically assessed. Human subject experiments provide a direct window to the users 

experience and decision-making with visual analytics tools and visualizations of spatio-

temporal data. I argue that human subject testing is necessary to support the 

development of visually inspired geovisualizations for effective and efficient exploration 

of movement data.  

The literature review has shown that the analysis of movement patterns has often 

focused on the identification of geometric parameters, such as change of speed or change 

of direction. Hardly any attention has been given to the semantics of movement patterns, 

such as the kind of moving object and its geographic context (also see (Klippel et al. 

2010), p.132). This empirical part of this research aims at providing insights to the 

existing body of knowledge on how users conceptualize spatio-temporal data and how 

context information helps to identify movement patterns. Only a few empirical studies 

have examined how humans conceptualize spatio-temporal data (Klippel 2009; Klippel et 
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al. 2010) so far. It is unclear at this point how context might influence the identification 

of behavioral movement patterns. This series of experiments also aims at identifying how 

users conceptualize spatio-temporal data, particularly individual movement behavior, but 

in static 2D representations. .  
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I approach this interdisciplinary research question with a series of complementary 

empirical methods that are described in the next section, such as qualitative interviews 

and controlled experiments.  

E<A<;(S*&37$&$7@,(:-$,%@7,2#(

Semi-structured qualitative interviews were conducted at the beginning of the project to 

identify potential factors that could be most relevant for the analysis of spatio-temporal 

data. These interviews were carried out with four experts using movement data in their 

daily research work. I recruited three moving data experts from zoology, anthropology, 

and transport planning at the University of Zurich and the ETH Zurich. The fourth 

interviewee is an air traffic controller at Zurich International Airport. The interviews 

consisted of three parts. The first part aims at understanding what kind of movement 

data participants typically use in their research context. Insight is gained in goal and task-

dependent information that participants might be looking for in movement data (e.g. 

location information for home ranges in ecology), and also to what extent participants 

have experience with visualizations of movement. In the second part of the interview 

participants are shown four different displays of a single movement trajectory without 

any additional metadata, or spatial, or temporal information (see Figure 12).  
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The objective of this part of the evaluation was to identify how participants explore 

spatio-temporal trajectory data, which strategies they intuitively adopt to understand the 

data, and whether their own research context drives the analysis. The participants were 

asked to think aloud while exploring the various shown trajectories, to express what they 

thought to recognize in the displays, and what kind of moving objects created these 

trajectories. Participants were then asked to rank how important they considered the 

following aspects: their own background knowledge, additional information about the 

object, and spatial and temporal scale of the object for the analysis of spatio-temporal 

data in visualizations. Results of these interviews suggest that previous knowledge of the 

analyst, domain specific tasks, as well as context information about the object, and spatial 

and temporal scale of the object, influence the identification of movement parameters.  

In the third part of the interview, participants were shown three different, commonly 

used visualizations of movement data, typically found in the current literature, such as 

the space time aquarium from Kwan (Kwan 2000)(see Figure 6). They were asked to 

assess the utility of the visualizations to recognize the behavior of moving objects and to 

identify patterns. Since the participants have had varying experience with visualizations 

of movement data, the preferences and perceived utility of the visualizations were also 

quite varied. Participants had difficulty to analyze or to understand visualized trajectories 

that did not fit the expected behavior of their assumed moving object. Therein lies an 

important component of the proposed cognition function (see Chapter 3), requiring 

more research attention. Especially the three dimensional depiction shown (from Kwan, 
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2000; see Chapter 2, Figure 6) proved to be very difficult to understand for half of the 

participants. All participants made recommendations and suggestions for improving the 

shown visualizations. The interviews revealed that researchers automatically adopt their 

usual inference strategies as if they were working with their own data, even when 

analyzing unknown data. They also seemed to have difficulties understanding displays of 

movement data they had never seen before, such as the classic space-time cube.  

E<A<A(51-$%133,4(LFC,%7+,-$#((

Controlled experiments allow the precise manipulation of a condition, to be able to 

measure the behavior of participants (Martin 2008). All of the experiments are controlled 

experiments, because in each case I tested context through graphically manipulated 

stimuli. The advantage of this method is that precise measurements are possible to test if 

the response behavior of the participants changes, depending on the visual input we 

provide them with. One of the disadvantages of this method is that the setting is 

artificial, i.e. participants had to come to our lab and do the respective tasks (except for 

the online experiment described later). Therefore also the intrusiveness is fairly high, 

because participants are not using visual displays of movement in their own research 

context, but have to perform a predefined task. However, it allows a researcher to draw 

causal conclusions between test conditions and participantsÕ answers and thus test our 

hypothesis that context matters for the identification of moving object and its behavior.   

Eye movement research is considered an additional approach to complement traditional 

performance measures (Li et al. 2010) and is briefly introduced now, as it has been 

employed in my first experiment. Recent software developments allow the easier 

collection and analysis of eye movement data (Li et al. 2010). It has therefore become 

more attractive recently to employ eye movement analysis not only in human computer 

interaction research or for studying cognitive processes, but also in the geovisualization 

domain (Cšltekin et al. 2009; Fabrikant et al. 2008a; Fuhrmann et al. 2005; Haklay and 

Zafiri 2008). Eye movement recordings are arguable considered as an objective measure 

to understand cognitive processes involved when people are presented with complex 

displays of spatio-temporal data. Eye movements consist of saccades and fixations; 

saccades being fast, uncontrollable ÒjumpsÓ from one fixation to the next fixations. 

Popular efficiency metrics are fixation duration and time to first fixation in areas of 

interest (AOI) analysis to identify which part of the visualization attracts attention, and 

where people are looking to solve specific tasks. These metrics are typically represented 
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in density maps, gaze plots or graphs. We have used eye movement research in our first 

experiment to get a more in-depth understanding where participants are looking to solve 

various tasks, thus being able to identify more clearly if and when context information 

seems relevant. This controlled experiment was conducted in our eye movement lab at 

the University of Zurich in individual participant sessions.  

I have used an online experiment for our second experiment, using open and closed 

questions. Web-based questionnaires have the advantage that the data collection is fast 

and efficient, although response rates are lower when used as an online questionnaire. 

The data from online experiments allows a fast measurement of opinions and attitudes. 

A disadvantage is that answers to open questions by participants are hard to verify 

(Martin 2008). The closed questions of this experiment were statistically evaluated, while 

open questions could just provide trends.  

!
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This first experiment assesses the influence of context information on the exploration 

and knowledge extraction from static, 2D trajectories of moving point data, i.e. human 

movement data. One kind of context information is the kind of moving object and its 

behavior, i.e. the intrinsic pattern characteristics. Extrinsic characteristics of patterns are 

the surrounding environment, the influence of other agents, as well as spatial constraints, 

such as networks and barriers (Dodge et al. 2008).  

At least seven spatial, temporal, and spatio-temporal parameters can be extracted from a 

movement trajectory, and are the basic primitives of individual movement, as identified 

in the taxonomy paper (Dodge et al. 2008). These parameters are position, distance, 

direction (spatial characteristics), instance, interval (temporal characteristics), as well as 

speed, and velocity (spatio-temporal characteristics). The basic movement parameters, as 

well as the intrinsic pattern properties, are the first parameters of movement behavior to 

be assessed in an empirical investigation. In this first experiment, I define context as 

Òadditional relevant informationÓ. Context is graphically manipulated by adding a legend 

and a title to the movement trajectory, thus revealing the object and its behavior (i.e. bike 

movement of an individual in one day). The experiment aims at answering the following 

two research questions:  

 

Q1a: Does additional contextual information, provided in the form of legend and 

title, help participants to identify a moving object and its behavior?  

 

The experiment has two parts. In the first part participants are asked to identify an object 

and its behavior based on a single movement trajectory. The second part of the 

experiment looks at the intrinsic pattern characteristics and analyses whether participantsÕ 

are able to identify the movement parameters correctly. It tries to answer the following 

question:  

 

Q1b: Does context information help for the identification of basic movement 

variables, such as distance, duration, speed, velocity, and position? 
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I chose two spatial parameters (position, distance), one temporal parameter (duration), 

and two spatio-temporal parameters (speed and velocity) for the empirical assessment. 

Velocity is defined in these experiments as the change of speed in a movement, i.e. the 

acceleration over a (short) period of time, while speed looks at the specific speed at a 

certain point in time. The movement parameters were used to assess userÕs performance 

(i.e. response accuracy) and efficiency (i.e. response time) when identifying movement 

parameters.  

N<;<;(=&%$7'7C&-$#(

Fifty-one participants took part in the experiment in our eye movement lab at the 

University of Zurich and additionally 15 subjects participated by online questionnaire. All 

participants were mother tongue German, as this was a requirement to be able to 

participate. A 53% of the participants are male and 47% are female. Hardly any of the 

participants is familiar with the analysis of movement data (1.5%) as well as with 

software to analyze movement data (1.5%). A majority of the participants is between 20-

30 years of age (57.6%), or between 31-40 years (39.4%). These numbers are not a 

surprise as the majority of the participants were researchers and students from the 

Department of Geography at the University of Zurich. They received a coffee voucher 

for the campus cafeteria in return for their participation.  

N<;<A(LFC,%7+,-$&3(G,#7/-(

The independent variable in this experiment is context. The measured dependent 

variables are the effectiveness (i.e. response accuracy) of identifying a movement 

characteristic and the efficiency (i.e. response time) of the participants measured in 

response time. Context information was manipulated with three graphical conditions in a 

between-subject design. The first display shows a movement trajectory without any 

additional information. The second stimulus includes spatial and temporal information in 

a legend (i.e. a scale and the temporal resolution), additional to the movement trajectory. 

Even more information is provided in a third stimulus, by adding a meaningful title 

revealing the kind of moving object and the movement activity shown in the trajectory. 

Figure 13 shows the three conditions for the first part of the analysis, where users are 

presented with a full trajectory. The experiment had a between-subject design to avoid 

potential learning effects. Each group of participants was only exposed to one type of 

stimulus and therefore only to one level of the independent variable, namely (a) without 

context information, (b) with a legend, or (c) with a title and a legend.  
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I used bicycle movement data from OpenStreetMap to construct movement trajectories 

in ESRIÕs Tracking Analyst. All stimuli were prepared by first converting a *.kml file 

from OpenStreetMap to a plain *txt file, and then creating a layer in ArcMap. All points 

from the GPS signal were colored in green and slightly enlarged. I then exported the map 

to Adobe Photoshop to extract useful parts of the overall trajectory. The stimuli were 

finalized in Adobe Illustrator by placing red circles (or arrows for velocity) to indicate 

different answer possibilities. Figure 14 shows (a) the full bicycle trajectory for the first 
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part of the experiment, and (b) a stimuli with answer possibilities for the second part of 

the experiment.  

Six sections of the full trajectory were used to generate more detailed stimuli to allow 

participants the identification of movement parameters, e.g. speed, duration etc. In order 

to provide enough stimuli and to avoid artifacts from specific stimuli, I reflected our six 

stimuli, i.e. the detailed trajectories were horizontally mirrored. In total I used twelve 

detailed trajectories, six of them being original parts of the trajectory and six reflected 

trajectories.  
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The overall and detailed movement data analyses were designed according to 

ShneidermanÕs information visualization mantra (Shneiderman 1996): ÒOverview first, 

zoom, filter, then details-on-demandÓ. The overall analysis is the first part of the 

experiment and is the identification of any kind of information with the goal to identify a 

behavioral movement pattern. The first part of the experiment included seven questions 

and participants were shown the full trajectory. For the detailed analysis users were asked 

to identify spatio-temporal characteristics, i.e. basic movement parameters as identified in 

the taxonomy of movement patterns (Dodge et al. 2008). This part of the experiment 

consisted of 15 questions, three questions for each of the five movement parameters, i.e. 

distance, duration, speed, velocity and position. I constructed three questions per 

movement parameter to ensure that participants answered coherently. I therefore had 

three blocks with each five questions. The five questions within each block were 

randomized. As shown in Figure 14, participants had to chose the correct answer from 

three possibilities, indicated by red circles at specific locations (A, B, C). Arrows 

indicated the movement characteristic velocity, as shown on the right side of Figure 14.  

Figure 15 shows the design of the experiment. The left column shows the individual 

parts of the experiment, while the right column shows the number of questions for each 

part.  
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A pilot experiment was conducted with three participants in the eye movement lab at the 

University of Zurich and four additional participants tested the questionnaire online. 

Minor changes had to be made about the wording of the test questions. The pilot test 

revealed that some of the stimuli were larger than others. I therefore set the width of the 

stimuli to an identical size (650 pixel). The height of the stimuli was different depending 

on the part the trajectory showed. The highest stimulus had a pixel size of 828, while the 

smaller ones were all at 468 pixels. Due to potential learning effects during the 

experiment, we disabled the back function of the browser.  

The online questionnaire was conducted using a commercial survey software 

(www.onlineumfragen.com) and was presented to the participants through a standard 

web browser in our eye movement lab. The eye movement lab is equipped with an 

active, near-infrared enabled remote video eye tracker (Tobii X120). The eye tracker was 

configured to record at 60Hz sampling rate. The screen was a 21-inch screen with a 

screen resolution of 1280*1024 pixels. The eye tracker was calibrated at the beginning of 

each experiment for each individual participant. All participants were assigned to a 

condition by their order of appearance, i.e. participant 1 had condition 1, participant 2 

had condition 2, and participant 3 had condition 3. 

N<;<B(=%1',4*%,(

Participants had to come to our eye movement lab at the Department of Geography at 

the University of Zurich to take part in the experiment. The experiment was conducted 

in German to avoid language problems and to ensure that all participants were able to 

fully understand the task. Participants first got an explanation how the eye tracker works. 

All subjects signed a consent form that informed them about the data collection, the 
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usage of the data, the eye tracker and the purpose of the study before the experiment 

started. Then the eye tracker was calibrated for the participant. The experimenter stayed 

in the eye movement lab and was available for questions or potential software problems. 

Participants were introduced to current movement data and to current collection 

methods by GPS, mobile phones, etc. Participants were presented with the displays of 

movement trajectories and were asked to first perform overall and then detailed analyses. 

The overall analysis showed the full trajectory and consisted of the following seven 

questions (with answer possibilities). An example stimulus can be seen in Figure 16, 

which shows an example display for the third question, in which participants had to 

identify the moving object.: 

Can you identify a pattern in this movement path? (yes, no) 

If yes, what kind of pattern can you identify? (open text field) 

What object do you think has made this path? (animal, human, eye) 

What do you think has the object been doing? (search food, search information, 

shop, walk, bike, defend) 

How long has the movement taken in your opinion? (1min, 1hour, 1day, 1 

month, 1 season, 1 year) 

How large is the space covered by the movement? (1qm, 100qm, 1ha, 1qkm, 

10qkm, 100qkm) 

To which extent do you think are the following aspects relevant for your 

analysis? (irregularities, turns, length, intersections, patterns) 

Then followed the 15 questions where participants had to identify movement parameters 

by choosing one of three answer possibilities indicated through red circles. Figure 17 

shows an example display of the detailed analysis.  
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At the end of the second part of the experiment, participants were asked to provide 

background information, such as age, gender, or their experience with GPS data, and 

experience and usage frequency with movement analysis software. The experiment took 

approximately 15 minutes.  

N<;<E(K,#*3$#(

The next section first presents the results of the statistical analyses. The statistical analysis 

is run with all 66 participants, including participants who have only participated in the 

online questionnaire (i.e. without eye tracking). The statistical analysis is therefore 

calculated with 22 participants for each context condition. 

 

Figure 18 shows the responses for the first question, which asked if participants see a 

pattern in the representation of the full movement trajectory. In total 16 participants 

(24%) were able to make out some kind of movement pattern, while 50 participants 

(75%) did not see any pattern. It is interesting to note that in each condition a majority of 

the participants did not see any patterns. Also, the more context information was 

provided, the finding of a pattern decreased (see Figure 18). 
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Sixteen participants (25%) overall have identified the moving object correctly as human. 

Numbers were higher, as expected, in context condition 3 (including title information), 

where 12 (18%) participants identified the object correctly. 25 participants (33 %) 

mentioned Òeye movementsÓ, as shown in Figure 19. Even when a title was presented 

which identified the object and its behavior, still 6 participants (9%) chose to respond eye 
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movements. This is surprising and might have happened because eye movement data 

most likely appeared to be fascinating and novel to most of the participants. Additionally, 

the participants were seated in front of an eye tracker when responding; often for the 

first time in their life, and probably considered the likelihood of eye movement data as 

fairly high.  
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The behavior of the moving object was identified correctly by 0% percent of the 

participants without context information (see Figure 20). Participants without any 

context information or legend information most often identified searching for food and 

searching for information. 50% of participants with title information chose biking as the 

behavior of the object. This makes sense, as the title information revealed that it was a 

bike movement. However, it is surprising that the other 50% of the participants chose 

other behaviors, such as information search, food search, shopping and strolling. 

Shopping and searching for food could possibly be considered when imagining that you 

can do these activities also by bike. However, this allows the suspicion that most 

participants did not see the title, did not consider it, or did not find it relevant for the 

task at hand. This will be discussed at a later stage again (see Discussion, Chapter 6.1).  
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The following section describes response accuracy for the identification of movement 

parameters. All figures show error bars, which represent the standard error of mean. 

Figure 21 shows the relative accuracy means for the three context conditions for all 

questions of the detailed analysis. The mean for Òno context informationÓ (M=60.6%) is 

only slightly lower than for the second condition with legend information (M=60.9%) 

and full contextual information with a title (M=67.9%).  
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Accuracy differences can be observed when comparing mean values for the movement 

parameters (compare with Figure 22). Speed (M=76.26%), velocity (M=71.21%) and 
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position (M=74.24%) are more accurately identified than distance (M=50.0%) and 

duration (M=43.94%).  
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Considering the different context conditions shown in Figure 23, we can see hardly any 

difference for individual movement parameter for the Òwithout any contextÓ and 

ÒlegendÓ conditions, while participants performed slightly more accurate with ÒtitleÓ 

condition. Figure 23 shows that speed is detected more accurately without any context 

information, while all other movement parameters show an increase in performance with 

additional context information.  
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An analysis of variance has been calculated to assess the effect of contextual information 

in visual displays. There was no significant effect of context on participantsÕ response 

accuracy at p<.05, for the three context conditions (i.e. without any context, with a 

legend, with a legend and a title) F(2,63)=.943, p=.395. This result suggests that context 

information does not have an influence on participantsÕ response accuracy for the 

identification of basic movement parameter.  

 

I also investigated participantsÕ response time (i.e., efficiency) for the detection of 

movement parameters. Figure 24 shows that the mean response time across context 

conditions is almost equal with a difference of about 1 second.  
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However, participants were more efficient to identify speed (M=.086), velocity (M=.091) 

and position (M=.090) in comparison to distance (M=.159) and duration (M=.184), as 

Figure 25 shows. Participants therefore not only perform more accurately with these 

movement parameters, but also more efficiently.  
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Overall participants take longer to respond to distance and duration compared to speed, 

velocity, and position. There was no significant effect of context on participants response 

time (i.e. efficiency) at p<.05 for the three context conditions F(2,63)=.642 p=.529. The 

result therefore suggests that context does not influence participantsÕ efficiency (compare 

with Figure 26). 
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Eye movement analysis was employed as an additional efficiency metric to the 

response times described before. The time to first fixation in areas of interest (AOI) is a 

classic metric in eye movement research. It can be employed to identify how long 

participants take to first fixate a particular AOI and in which sequence the AOIs in the 

display are first fixated (Goldberg and Kotval 1999). This metric allows us to additionally 

investigate the efficiency, i.e. detection speed, of particular areas of the stimuli and to 

differentiate potential search behavior for specific individual movement parameters. For 

each stimulus, I delineated an area of interest (AOI) in Tobii Studio (i.e. an eye 

movement recordings analysis software) by creating polygons for legend and title 

information, as well as for the main area representing the movement trajectory. The 

AOIs of the stimulus in the first part of the experiment (i.e. overall analysis) were those 

parts of the trajectory that were more complex, such as ÔcircularÕ movements at the right 

side of the trajectory, the data ÔjumpÕ in the center of the stimulus, as well as the more 

ÔcomplexÕ part at the left side of the trajectory (as shown in Figure 27). The AOIs in the 

second part of the experiment (i.e. detailed analysis) were (additionally to legend and title 

information) the answer possibilities indicated through red circles.  
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Before being able to actually analyze the data, I had to prepare the data sufficiently. Tobii 

Studio allowed me to export all time to first fixation metrics for the respective stimuli in 

text file. Each condition and each stimulus were exported separately, resulting in 66 

individual files. The three context conditions were combined in Microsoft Excel and 
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generated 22 files. While preparing the data, two data entries caught my attention: Tobii 

Studio codes all missing values as -1.00, while 0 is recorded when the participant does 

not fixate at a certain area of interest in the stimulus. Missing values can appear in eye 

movement recordings, for instance, when participants in the condition without any 

context information neither see a legend nor a title. This results in a missing value data 

entry for the legend and the title AOI. Another reason why missing data can occur is if 

the eye tracker loses its signal during a recording session. Participants were excluded 

from the analysis if data was missing for all relevant areas of interest in one stimulus or a 

series of displays. If only one area of interest (out of minimum of four AOIs) in a 

stimulus was missing the participant was not excluded from the sample. To be able to 

run an analysis with missing values, I pre-processed the data by computing the series 

mean as a value for the missing entries. This was done individually for each context 

condition. The advantage for this procedure is that ÒtrueÓ missing values for legend and 

title AOIs in the condition without any information will remain a missing value (as there 

is no series mean), while all other missing values are assigned the series mean. One 

should note that it was only a maximum of two values per context condition that were 

missing per AOI, i.e. a maximum of 2% of the data. Using the series mean is a 

reasonable measure to calculate the missing values.  

 

The results show that participants looked at contextual information first when presented 

with the stimuli to identify the moving object (i.e. second question), before analyzing the 

trajectory. This is true, both when asked to identify which object has made the trajectory 

as well as when identifying the objectÕs behavior. To identify the object, participants with 

full contextual information (legend and title) first examined the title (M=1.63 sec), before 

looking at the legend (M=6.76 sec), and finally the trajectory itself (M=7.02 sec). 

Similarly, if only legend information was available, participants studied the legend first 

(M=3.30 sec) before looking at the trajectory (M=3.68 sec). The relatively short time 

between the legend mean and the trajectory mean suggests that not all participants have 

looked at the legend. It is also interesting to note that participants studied the trajectory 

from left to right, thus the common reading-direction in Europe. The ÒcomplexÓ area of 

interest is on the left side of the trajectory, the ÒjumpÓ in the data is in the center and the 

ÒcirclesÓ are at the right side of the trajectory (also compare with Figure 28).  
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For the recognition of the objectÕs behavior task, I find a similar pattern of fixation 

sequence as for the object recognition task, as Figure 29 shows. When no context 

information is presented, participants looked at the trajectory from left (M=5.08 sec) to 

right (M=10.19 sec). However, if context information is available, participants use this 

information first before studying the trajectory. In the title condition, participants needed 

on average 2.85 sec to look at the title, followed by the legend (M=6.59 sec). In the 

condition with a legend, participants also focused first on the legend information 

(M=2.36 sec), before looking at the rest of the trajectory.  

 
!"#$%&'8X)'V"0&'-+'/"%7-'/".1-"+,'/+%'^&=12"+%']&5+#,"-"+,'

3.
12

 

6.
20

 

8.
74

 

3.
68

 

5.
23

 

8.
36

 

3.
30

 

7.
02

 

11
.6

5 

17
.8

0 

6.
76

 

1.
63

 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 

Complex Jump Circles Legend Title 

T
im

e 
to

 fi
rs

t f
ix

at
io

n 
in

 s
ec

 

Areas of  Interest 

Time to first fixation for object recognition 

No Context Legend Title 

5.
08

 

5.
71

 

10
.1

9 

4.
21

 

8.
70

 

8.
95

 

2.
36

 

10
.1

5 

9.
70

 

18
.5

7 

6.
59

 

2.
85

 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 

Complex Jump Circles Legend Title 

T
im

e 
to

 fi
rs

t f
ix

at
io

n 
in

 s
ec

 

Areas of  Interest 

Time to first fixation for behavior recognition 

No Context Legend Title 



Assessing the Relevance of Context for Visualizations of Movement Trajectories 
 

 

!
!

*.

In the second part of the experiment (i.e. detailed analysis) participants had to identify 

five movement parameters, which are reported now individually.  

For position information we can see a similar response pattern as for the overall analysis 

(also see Figure 30). When context information is provided, participants looked at it, 

before examining the individual answer possibilities. The title was inspected on average 

after 1.9 seconds, followed by legend information (M=4.93 sec) and then the answer 

possibilities, i.e. the red circles labeled A, B, C on the trajectory. The answer possibilities 

for position information were examined in a fairly homogenous manner, i.e. a clear 

sequence of CBA is detectable.  
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The detection of speed shows a slightly different picture. First of all, there is no clear 

fixation sequence of where participants looked first when analyzing the mean response 

times for this stimulus, as Figure 31 shows. Therefore all conditions are examined 

individually. Participants with no context information first looked at B (M=4.41 sec), 

followed by C (M=5.87 sec) and finally looked at possibility A (M=7.72 sec). Participants 

with a legend examined possibilities A (M=4.33 sec) and C (M=4.95 sec) first, before 

looking at the provided legend information (M=5.73 sec), followed by possibility B 

(M=5.74sec). In this case, legend information clearly was not as important. We see 

another interesting result when looking at the mean time to first fixation in the condition 

with full context information. The title is in general examined only 1.22 seconds after the 

stimulus is presented, but the following area of interest participants are looking at is the 

answer option C (M=5.77 sec). Next, legend information is considered (M=7.06 sec), 

before analyzing the trajectory again (B with M=7.83 and A with M=8.75 sec).  
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The sequence pattern for the identification of velocity information is fairly 

heterogeneous (compare to Figure 32). The time to first fixation sequence for the 

condition without context information is C (M= 3.43 sec), A (M=3.54 sec), and B 

(M=4.05 sec). Legend information does not seem to be crucial for the identification of 

velocity in both conditions with context. The legend is in both conditions examined at 

the very end, and only after approximately seven seconds (M=7.34 seconds for legend 

condition, and M=7.51 seconds for title condition). In both conditions participants 

examine A (M=3.48 seconds in legend condition, and M=5.16 seconds for the title 

condition) and B (M=2.89 seconds for legend condition, and M=5.65 seconds for title 

condition), before examining answer possibility C (M=3.49 seconds and M=5.67 

seconds). Similarly to the results of the other two movement parameters, participants 

identify title information first when a title is provided.  
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To identify the two spatio-temporal movement parameters distance and duration, 

participants had to compare two pairs of points A to B (AB) and C to D (CD). All 

participants, regardless of the context condition, first examine the trajectory (compare 

with Figure 33). The legend information is the last area of interest that is examined. In 

contrast, title information is examined early on as the second AOI when provided. The 

CD area of interest is examined first by participants with legend information (M=3.98 

sec) and with title information (M=3.79 sec). Participants with no context information 

first look at AB (M=4.77 sec) before looking at C to D (M=5.06 sec).  
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When looking at the identification of duration information, it is interesting to note that 

again legend information is the last area of interest to be examined (also see Figure 34). 
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The answer possibility CD is examined first by participants with no context information 

(M=3.7 sec) and participants with title information (M=4.76 sec). Participants with 

legend information first examine the AB area of interest (M=5.78 sec) before analyzing 

CD (M=6.7 sec) and then looking at the legend. Participants with title information first 

examine CD (M=4.76 sec), before looking at the title (M=5.67 sec).  
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The results of the experiment suggest that the identification of the moving object is poor 

in all context conditions. Hardly any differences are identifiable between the condition 

without any context information and the legend condition. Most participants chose 

animals or eye movements as the moving object. In the title condition, more participants 

chose a human as the moving object as compared to the other conditions, but still almost 

50% of the participants were incorrect by stating it related to eye movements. This result 

is surprising, as the answer was in the title, i.e. bike movement from one day. Similar 

results are obtained when participants had to identify the behavior of the object. Again, 

most participants, regardless of the context condition chose Ôsearch for informationÕ or 

Ôsearch for foodÕ as the behavior. This suggests that the object was seen as either being 

an animal or eye movements. Even when title information is available still almost half of 

the participants chose Ôsearching for informationÕ, as opposed to the obvious biking 

activity. One possible reason for this result might be that participants are biased because 

they are sitting in front of an eye tracker in an eye movement lab. Probably most 

participants have never seen an eye tracker or used one, and also do not know how the 
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scan path of eye movements looks like. We think that the novelty of the eye tracker has 

lead to the assumption that this track could have been made by an eye tracker without 

taking the title into consideration. Another reason might be that the title information is 

too obvious, and lead participants to believe that this is a trick question, as some of the 

participants indicated.  

When considering the identification of the tested five movement parameters, we can 

conclude that context information does not improve the performance of the participants. 

Nevertheless, participants perform better for the spatial and temporal variables (e.g., 

position, velocity and speed), as opposed to the spatio-temporal variables (e.g., distance 

and duration), and an ANOVA confirms a significant difference. ParticipantsÕ 

performance is not influenced by context, but rather by the movement parameter that 

has to be identified, e.g. speed, distance, etc. However, accuracy is still relatively low at 

63%. Efficiency is also higher for speed, velocity and position variables, in contrast to 

distance and duration. In other words, distance and duration are harder to identify 

accurately and consequently it also takes participants longer.  

Results from the eye movement analysis reveal that context information communicated 

with legend and title is not consistently used throughout the experiment. There might be 

two reasons for this: Context information does not change during the experiment, i.e. by 

the time participants start to identify basic movement parameters, the context 

information has been displayed seven times. Perhaps context information is simply not 

considered due to a boredom effect. Another reason might be that participants did not 

need context information to identify movement parameters. All task relevant information 

is directly observable in the trajectory representation itself as the GPS points are sampled 

at equal time intervals. Speed information, for instance, can easily be obtained by 

examining the distance between points, i.e. the closer the points, the slower the object. In 

this case, context information is not necessary for the identification of basic movement 

parameters.  

 

To summarize the results of this experiment we find that participants did use title and 

legend information when trying to identify the moving object and its behavior, and 

participantsÕ performance increased slightly. A trend can be identified that context 

information helps to more effectively identify a moving object and its behavior. I can 

therefore positively answer our first research question:  
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Q1a: Does extended contextual information, in the form of legend and title, help 

participants to identify a moving object and its behavior? 

 

However, the results demonstrate that context information does not influence the 

accuracy of identifying movement parameter. I therefore have to answer our second 

research question negatively:  

Q1b: Does context information help for the identification of basic movement 

variables, such as distance, duration, speed, velocity, and position? 
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From the first experiment we have seen that only the accurate identification of moving 

object and its behavior were influenced by context information by using additional 

relevant information. The second experiment looks at the environmental setting of the 

movement, i.e. geographic context. I therefore test if the assumption also holds for 

geographic context information. This experiment therefore focuses on two questions:  

 

Q2a: Are participants more accurate and confident in identifying a moving object 

and its behavior having geographic context information? 

 

Q2b: Does it matter for the identification of a moving object and its behavior if a 

movement trajectory is situated in its true geographic context? 

N<A<;(=&%$7'7C&-$#(

In total 46 participants completed the online experiment. Out of the 46 participants that 

completed the questionnaire, two participants were eliminated from the analysis. One 

participant did the online questionnaire on a smart phone, i.e. with a screen size of 

approximately 9 inches, which is considered too small to visually examine the trajectory 

in detail. The second participant suffers from a red-green color deficiency. Since the 

trajectory in the second half of the experiment is displayed as a red trajectory on a 

greenish terrain map, I concluded that the visibility of the trajectory is possibly too weak 

to accurately see the trajectory. Subsequently, 44 participants were analyzed in this 

experiment. 57% of the subjects were male participants and 43% are female participants. 

The age of the participants ranged from 20 to older than 60. 68% of the participants are 

between 20-30, an effect from sending the invitation to students and colleagues. 16% are 

between 31-40 years old, 14% are between 41-60 years, and only 2 % of the participants 

are older than 60 years.  

N<A<A(LFC,%7+,-$&3(G,#7/-(

The independent variable is geographic context information, and has two treatment 

levels. The first treatment level is without any context information, i.e. the trajectory is 

displayed on a homogenous background. The second treatment level shows a terrain 

map that locates the movement trajectory into its geographic context, i.e. in the 

environment. 
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Human movement data collected for the Mafreina research project (www.mafreina.ch) 

from the University of Applied Sciences in WŠdenswil, Switzerland, was used to 

construct movement trajectories. The data consists of GPS tracks that were recorded 

during various outdoor activities in the Swiss National Park. The participants study a 

single movement trajectory represented by a temporal sequence of GPS fixes, i.e. dots, 

on a 17-inch sized display. The stimuli are generated by overlaying the GPS tracks on 

Google Maps. Therefore the GPS-files were mapped employing Google Maps API. The 

experiment is set up as a two (geographic context) by two (behavioral context) by two 

(path type) factorial design. The experiment is a within-subject design, with geographic 

context being the within-subject factor, i.e. participants are presented the trajectory first 

without and then with context information through a terrain map. To display the 

trajectory without context information we calculated a small transformation of the 

longitude coordinates by subtracting 20¡. This transformation had the effect that the 

trajectory was displayed in the Atlantic Ocean and thus the terrain map is simply light 

blue. When displayed with a terrain map, the map represented the actual location in the 

Swiss National Park. To strengthen the geographic context information, the terrain map 

includes cartographic symbols indicating camping facilities. One should note though, that 

the camp symbols were carefully located at spots where neither the speed, nor the 

direction of the trajectory changed to avoid any biases caused by movement changes in 

the trajectory (see Figure 35 for geographic context).  
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Behavioral context has two treatment levels and shows eight stimuli generated from 

movement trajectories from ski touring, while the other eight stimuli show movement 

trajectories from skiing on slopes (piste). These two (goal directed) outdoor activities 

create distinctly different movement patterns, as shown in Figure 36. Downhill skiers 

move (rapidly) downhill within a well-defined elongated area of groomed slopes, always 

in the vicinity of existing ski lift infrastructure (slower and mostly straight uphill 
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movement). Backcountry skiers on the other hand hike (slowly) uphill in (sometimes 

meandering) tracks and (more rapidly) ski downhill, unrestricted by human made 

infrastructure.  
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In each of these conditions, we have four trajectories that are open and four trajectories 

that are closed to manipulate the factor path type. Open trajectories have a different 

starting and end point (marked with O as for example in OTour), while closed 

trajectories have the same start and end point (see Figure 37 for comparison). The 

trajectory shape (open/closed) has been hypothesized by prior psychological work to be 

cognitively and perceptually different (Shipley and Maguire 2008). One half of the 

trajectories are original GPS tracks, while the others are horizontally rotated trajectories. 

The reflected trajectories are therefore, when presented with geographic context 

information, not in their true geographic location.  
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Table 1 lists all stimuli grouped according to behavioral context (tour/piste) and path 

type (closed/open). All horizontally reflected stimuli and are marked with _h at the end.  
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 Ski touring (Tour) Skiing on slopes (Piste) 

Tour1 Piste1 

Tour2 Piste2 

Tour1_h Piste1_h 

Closed 

Tour2_h Piste2_h 

OTour1 OPiste1 

OTour2 OPiste2 

OTour1_h OPiste1_h 

Open 

OTour2_h OPiste2_h 

 

Each participant answered two qualitative (i.e. open text) questions and two quantitative 

questions. The dependent variables are confidence and accuracy (from second and third 

question). The four experiment questions were:  

1. What do you think is presented here in red? You can name anything that you 

consider to be correct.  

2. How confident do you feel about your answer? 

3. Who or what do you think has moved? 

4. What else comes to your mind?  

The open questions (Òwhat do you think does the red path show?Ó and Òdo you have any 

additional commentsÓ) were intended to get insight into the userÕs initial idea what kind 

of object has made the trajectory and maybe getting a hint what information participants 

used to identify the moving object. 

Each participant is shown only four stimuli in each context condition from the 16 

stimuli, resulting in four groups of participants. Each group of participants has one open 

and one closed ski tour trajectory and one open and one closed skiing trajectory. The 

questions and the stimuli are presented through a web questionnaire designed with 

www.onlineumfragen.com (also compare with Chapter 4.1.1). The assignment of the 

participants to the groups was randomized using a *.php script (for details of the script 

see Appendix). In total, each group had to answer 16 questions for four stimuli without 

context information and 16 questions for four stimuli with geographic context 

information. Participants were first presented with the displays without any context 

information to avoid potential learning effects from seeing the trajectory on a terrain 

map.   
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The experiment was piloted in two phases with a total of five students at the Geography 

Department of the University of Zurich. The first pilot round with two participants 

suggested that a within subject design is favorable to a between subject design because it 

allows to see more directly the changes in participantsÕ behavior. In the second round of 

pilot experiments, participants also tested the presentation of the online questionnaire, 

and the forwarding from a homepage (with the randomization function). The wordings 

of the questions were changed to make questions easier to understand.  

N<A<B(=%1',4*%,(

The questionnaire was sent as an online invitation to participate in this experiment. The 

invitation was sent to approximately 100 undergraduate students of the Department of 

Geography, as well as to about 100 friends and colleagues. It was not required that 

participants have a geography background. After getting a first introduction on a website, 

participants were randomly forwarded to one of the four questionnaires on 

www.onlineumfragen.com. 

Each participant was first presented with four stimuli without any context information. 

Participants answered the first question by writing their impression into an open text 

field. In the second question participants rated their confidence on a Likert Scale from 

one, indicating Òvery unsureÓ, to five, indicating Òvery confidentÓ. The third question 

asked if participants could identify the moving object, and participants could choose 

from one of four options, namely animal, human, nature phenomenon, or machine. In 

the fourth question, participants could state their additional comments and impressions 

in an open text field. After four stimuli without context information, participants saw the 

same stimuli with context information and answered the respective questions.  

At the end of the questions, the participants had to answer some personal questions, 

such as age, gender, their familiarity with GPS data, the screen size they have used, their 

hobbies, and if they have any red-green/color deficiencies. The experiment took 

approximately 20 minutes and was conducted completely anonymously.  

N<A<E(G&$&(=%,C&%&$71-(

Figure 38 shows the workflow for the analysis of this experiment. After the data 

collection the results can be split into quantitative and qualitative data. The experiment is 

analyzed in two steps: First, the quantitative data is analyzed and consists of questions 

regarding participantsÕ confidence and the object they recognize. The second step is the 

analysis of the qualitative data.  



5. Empirical Evaluations 
 

!
!

+%

 
!"#$%&'>W)'9+%:/;+<'/+%'-=&'1,1;R7"7'+/'[.@&%"0&,-'PP'

Before being able to analyze the data of the second experiment, the data had to be 

aggregated and prepared for analysis. The four individual group files were aggregated into 

one large file. In a next step new variables were computed that summarized certain 

stimuli into one, using the respective values from each participant, e.g. the confidence 

ratings for all ski touring data Tour=SUM(Tour1, Tour2, Tour1h, Tour2h). In this case, 

the variable is summarized according to the activity, but does not take into account if the 

trajectory is correct or incorrect in its geographic context. Another aggregation takes into 

account if the trajectories are open or closed (e.g. OTour). In a second set, I aggregated 

the data also according to its correctness in their geographic context, e.g. the confidence 

for all correct ski touring data posTour=SUM(Tour1, Tour2, OTour1, OTour2). In this 
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case, open and closed trajectories are summarized, but we can distinguish between 

correct and incorrect trajectories. The summary of the results will always look at the 

aggregated data by path type and then the aggregated data by its geographic correctness. 

To be able to analyze the accuracy of participantsÕ responses, the data was re-coded into 

correct and false answers (1, 0). After the data preparation I ran statistics for the 

quantitative data, following three steps: 1. descriptive statistics, 2. test for normality, and 

3. (in this case) non-parametric tests to check significance of accuracy and confidence 

values.  

For the analysis of the qualitative data, categories were established and analyzed. In a first 

step, I inspected the data to identify possible response categories. Obviously categories 

are different for the different activities, as the visualizations of the trajectories generate 

two distinctively different pictures. However, some categories are applicable to both 

activities, like trajectory of a human, or trajectory of an animal. The identified categories 

for the first question are:  

Trajectory animal, trajectory human, trail, border, river, region, ski area, data, 

natural phenomenon, cable car, combination of technical and trail, technical 

installation, air traffic, other, and no idea.  

The identified categories for the second question are: 

Speed, direction, shape, line, open and closeness of trajectory, start and end, clear 

interpretation ideas, unclear interpretation, and topography.  

All answers from participants were evaluated according to these categories. As a result I 

have response frequencies per category that can be further analyzed. The results of the 

two open questions reported in the next section are based on these categories.  

N<A<N(K,#*3$#(

Confidence 

I first report the results of participantsÕ mean confidence ratings. On average 

participantsÕ confidence rating was 2.87 on a scale form 1 to 5, with a mean confidence 

of 2.33 without any context information, and a mean confidence of 3.38 when context 

information was available. In other words, participants feel more confident to analyze a 

movement trajectory when geographic context information is available, thus allowing the 

participant to see where the movement has happened.  

Examining the results in more detail shows that confidence increases with geographic 

context information to analyze a movement trajectory, for both path types and activities 
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shown in the display. However, no significant difference is observable when comparing 

the different path types, as Figure 39 shows.  

 
!"#$%&'>X)'F&1,'5+,/"6&,5&'%1-",#7'/+%'15-"2"-R'1,6'@1-='-R@&'

Similarly, I explored the data according to the correctness of the geographic context, i.e. 

if the trajectory is situated in its true geographic location.  
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When participants are presented with trajectories that show their true location (true), i.e. 

spatially meaningful, participants are more confident in their responses as Figure 40 

shows. Participants feel more confident in their response when the trajectory for the ski 

tour activity is in its true location (M=4.18), rather than for a false trajectory (M=3.14).  
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As response data are not normally distributed, a Wilcoxon-signed-rank test was applied 

to test whether context has an effect on participantsÕ confidence to analyze movement 

trajectories. The test is based on negative ranks. The z-score is -5.011 and is significant at 

p<.001. Overall participants are significantly more confident with context information 

(M= 3.38) than without (M= 2.33), z=-5.01, p<.05, r=-0.755.  

 

Object recognition 

In the second quantitative question participantsÕ had to identify the moving object.  

Assessing the response accuracy by path type for the two context conditions, we see that 

participants recognize the moving object more accurately when the trajectory is 

presented with geographic context information (see Figure 41). Especially for the closed 

Tour trajectory (left most column), the difference between the two conditions is high, i.e. 

25% accuracy without any context versus 65,9% accuracy with context information. 

However, the difference between the different activities and path types within one 

context condition, e.g. with geographic context, is rather small (50-65%), which suggests 

that neither a certain path type (open or closed) nor a specific activity leads to better 

performance of participants.  
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More interesting is the performance of participants when aggregating the data according 

to context correctness, i.e. if the trajectory is presented in its true geographic location (as 

shown in Figure 42). The differences for the true and false piste skiing trajectories are 

not that obvious. For piste skiing trajectories participants perform better with context 

information, but no difference seems to exist between the correct and incorrect location 
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of the trajectories. Conversely, we can see a difference when examining the ski touring 

data. In both cases, participants performed better with context information, but while 

81,8% of the participants correctly identified the moving object in the true trajectory, 

only 34.1% of the participants identified the object correctly in the incorrectly placed 

trajectory condition.  Figure 43 shows the same trajectory, in a) the correct geographic 

location, and b) the incorrect geographic location. A meaningful tour trajectory leads 

onto Piz Tarretas and back (a), while in (b) the trajectory crosses steep cliffs and does not 

have a meaningful start and end point. Participants therefore might have identified the 

trajectory to be from an animal, rather than a human. These findings suggest that context 

and background knowledge does matter in this instance.  
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To better understand why participants could not correctly identify the moving object, I 

briefly examine the frequencies for object recognition without context information more 

closely. Participants were given four choices, namely human, animal, machine, and 

natural phenomenon. Figure 44 shows the frequencies for all options when participants 

31
.8

 

25
 

31
.8

 

36
.4

 

81
.8

 

34
.1

 

56
.8

 

56
.8

 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

true Tour false Tour true Piste false Piste 

R
es

po
ns

e 
ac

cu
ra

cy
 in

 %
 

Geographic correctness 

Accuracy of  object recognition for context correctness 

without context with context 



Assessing the Relevance of Context for Visualizations of Movement Trajectories 
 

 

!
!

+*

had no context information, while Figure 45 shows the frequencies of all response 

frequencies with context information.  
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These two figures clearly show that participants identify a human as the moving object 

more frequently with context information than without context information for all 

activities. The frequencies for animal, natural phenomenon, and machine drop quite 
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significantly when context information is provided. When presented with trajectories 

from skiing on slopes, most participants favor machines. The reason is, that the 

trajectory has straight lines, which does not appear very human. It is also noteworthy that 

when presented with an incorrectly placed trajectory for the ski touring activity we can 

observe a difference in accuracy again. In this case, most participants favored an animal 

to a human moving object. When related to the limited confidence when presented with 

an incorrectly placed trajectory, we can conclude that participants feel less sure about the 

object and its movement when the trajectory seems mis-placed.  

 

A test for normal distribution reveals that the accuracy values are also not normally 

distributed. Therefore the Wilcoxon-signed-rank test is used. The test reveals that 31 

participants were more accurate when presented with context information. Five 

participants scored lower when context information is provided and eight participants 

have tied ranks. The test is based on negative ranks. Z-scores of +/-4.267 are smaller 

than .001. We can conclude that accuracy increases with context information. To 

summarize the accuracy results for both conditions for participantsÕ accuracy was 

significantly higher with context information (M=57.38%) than without context 

information (M=31.25%), z=-4.267, p<.05, r=-0.643.  

I can briefly summarize the quantitative analysis by stating that accuracy and confidence 

significantly increase with geographic context information. In a next step, I will highlight 

the results from the open questions.  

 

Qualitative Analysis 

This section looks at possible reasons why and how the results of accuracy and 

confidence can be explained, by reporting the response frequencies of the specific 

categories (as explained in Chapter 4.2.3). I first examine the first open-ended question 

asking what the red path represents. Figure 44 and Figure 45 represent the frequencies of 

categories for ski tour data (a) without and (b) with context information. When 

comparing the two graphs we can see that more categories are used when no context 

information is provided. Obviously participants can be more specific about the meaning 

of the trajectory when additional information is provided. Almost all participants seem to 

believe that the red path must be a human or animal trajectory, or a trail, e.g. hiking trail, 

and not an artifact. Trail and trajectory categories both lead to the same assumption that 

a moving object with reasoning has left this trajectory, being animal or human.  
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A similar response pattern can be observed when inspecting participantsÕ responses for 

the activity skiing on slopes data. Figure 48 and Figure 49 show the response frequencies 

by categories, (a) without and (b) with context information. Similar to the data about ski 
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touring, we can see that fewer categories seem to be needed when context information is 

provided. Different categories are used than for ski touring data, especially categories 

that include some kind of technical equipment, such as ski area, air traffic or other types 

of non-self-propelled locomotion. In other words, when context information is 

provided, participants focus on the combination of movement with technical equipment. 

The categories cable car, combination of technical and trail, as well as ski area, are the 

most mentioned categories, indicating that participants not only focus on the shape of 

the trajectory, but also consider the geographic context in which the movement takes 

place.  
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I now examine the results of the second open question, namely the response frequencies 

of the categories participants used when adding comments. Figure 50 and Figure 51 

suggest participantsÕ mention fewer, but more specific comments as compared to the 

previous question. When participants have context information, fewer comments are 

made and these are focused onto a minimum of categories. A reason for fewer 

comments with context information could be that the concept and reasoning about the 

movement trajectory gets more focused during the experiment, i.e. participants have 

thought about the kind of object and its behavior enough to give precise comments. The 

additional comments were then mainly used to explain participantsÕ reasoning. Without 

context information, participants commented on many different things, mainly the path 

itself, i.e. its shape, the constitution of the line, its start and end points, as well as speed. 

The comments seem to be focused more on the appearance of the trajectory, rather than 

the semantics without context information.   

0 2 4 6 8 10 12 14 16 

trajectory_animal 
trajectory_human 

trail 
border 

river 
region 
skiarea 

data 
naturalphenom 

cablecar 
combination_tech_trail 

technicalinstallation 
airtraffic 

other 
noidea 

context 

Response Frequency 

C
at

eg
or

ie
s 

Frequency of  categories for ski (piste) data with context information 

false Piste true Piste 



5. Empirical Evaluations 
 

!
!

,%

 
!" #$%&'IG )'!%&M$&,5R'+/'51-&#+%"&7'+/'166&6'5+00&,-7'<"-=+$-'5+,-&.-'",/+%01-"+,'

 
!"#$%&'I( )'!%&M$&,5R'+/'51-&#+%"&7'/+%'V+$%Q'166&6'5+00&,-7'<"-='5+,-&.-'",/+%01-"+,'

Analyzing which categories are most common when context information is provided 

shows that there is a notable difference between correctly and incorrectly placed 

trajectories. When presented with a correct trajectory, participants focus on the speed 
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and the line of the red path, and, most importantly, give a clear interpretation what the 

trajectory represents. In contrast, when the trajectory is not at its correct geographic 

location, participants focus on speed, the topography, and give an interpretation that 

reveals that participants are unsure what the path represents. Some individuals 

specifically state that the relation between the topography and the trajectory seems 

awkward. In contrast to the condition without any context information, participants now 

focus on the content, rather than the appearance of the trajectory and topography.   

Next, I examine the results of the skiing on slopes (piste) data. We can observe an 

analogous trend for the skiing data. The comments of the participants in the first half of 

the experiment, i.e. without context information, are more diverse than with context 

information in the second half of the experiment (also see Figure 52). Most participants 

comment on the shape of the trajectory, probably due to the fact that the trajectory is 

distinctively different from the touring data, because it has straight and bent parts. Hardly 

any differences can be observed between the two trajectory conditions (correct and 

incorrect geographic location) when no context information is provided. On the other 

hand, with context information we can observe differences among participantsÕ 

comments (also see Figure 53). For the correct ski trajectories (true Piste) most 

participants give a specific interpretation of the represented data. Some participants also 

comment on the shape of the trajectory and speed. However, when the trajectory is not 

correctly situated in the environment, most participants comment on the topography, 

and that the interpretation is more difficult of the trajectory. Five participants however 

give a clear interpretation of the trajectory, despite its dislocation in the environment.  
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Most participants assume that humans or animals made the tour trajectories, which is 

surprising, as they could have also considered natural phenomena, such as the path of a 
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hurricane, or a border of a lake. Participants were not told at the beginning of the 

experiment what kind of movement data they are looking at. Especially they were not 

told that the trajectories were made with GPS samples. Perhaps the small Google Maps 

logo displayed in the corner of the display might be responsible for this result, and 

participants assumed humans or animals making the trajectory. It is also interesting to 

note that most participants stuck to their ideas about the moving object and its behavior 

during the first part of the experiment. Most participants used consequently one 

explanation for the tour trajectories and one explanation for the piste trajectory and only 

changed their explanation with the added context information in the second half of the 

experiment.  

The analysis of the categories, found in the qualitative questions, reveals that precise 

interpretations were given with context information. Specifically, more participants 

interpreted the red path as a human trajectory when context information was provided, 

as opposed to landscape features or animal trajectories without context information.  

Table 2 highlights the most important effects shaded in red (strong differences) and 

orange (slight but noteworthy differences) colors. 

V13;&'8)'E$001%R'+/'%&7$;-7'/+%'[.@&%"0&,-'PP'

Confidence (from 1-5) Accuracy (in %)  

No context With context No context With context 

Tour 2.43 3.65 28.5 61.3 Behavioral 

context Piste 2.29 2.97 32.9 53.4 

Open 2.37 3.07 34.1 56.8 Path type 

Closed 2.35 3.69 28.4 57.9 

Correct 2.46 3.71 31.8 69.3 Correctness 

Incorrect 2.26 3.06 30.7 45.4 

 

Behavioral context, i.e. different activities of movement, does not significantly influence 

participantsÕ response accuracy and confidence. These results reflect in the quantitative 

questions, but not so much in the qualitative questions. When identifying the red path, 

participants made a distinction between the two activities. For tour trajectories most 

participants considered it human or animal, as opposed to piste data where most 

participants considered it to be made from machines. The reason is potentially the shape 

of the path, as it is more irregular for the activity tour. In contrast, trajectories from piste 

data have straight lines, which seem untypical for natural phenomena or processes. These 

findings correspond to the answers in the additional comment question, where most 
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participantsÕ commented on the particular shape of the trajectory, especially the straight 

lines when adding comments to the piste data displays. For tour data, most participants 

commented on the character of the line, i.e. if dots were visible or how thick the line was.  

The path type did not reveal any significant differences for accuracy and confidence and 

therefore did not influence participantsÕ ratings and/or comments. However, the 

experiment results indicate that it is more important what the shape of the line looks like, 

i.e. straight lines vs. bent lines, rather than open or closed trajectories. The results 

therefore indicate that path type or appearance of the trajectory plays a role, but not as 

predicted. 

One interesting effect can be observed when the trajectory is not presented in its true 

location, but is 180¡ reflected. Participants chose more often that the moving objects are 

animals, rather than humans, if the trajectory was not at its true location. A potential 

explanation for this effect is that incorrectly located trajectories cross steep terrain, and 

participants probably concluded (rightly) that humans cannot traverse this kind of 

terrain. In case of the piste trajectories the lines are crossing a valley, which is also rare in 

reality. Since most participants assumed these trajectories to be from skiing activities, 

these trajectories also were not sensible. These results are highlighted in the accuracy and 

confidence results in Table 2.  

In the second experiment I was able to demonstrate that accuracy and confidence of 

participants increases when a movement trajectory is presented with additional, 

geographic, context information. It basically tells us that people are more confident when 

making judgments about movement trajectories with context information, and their 

performance increases.  

 

To conclude, I answer the following two research questions, as posed at the very 

beginning:  

 

Q2a: Are participants more accurate and confident to identify a moving object 

and its behavior with geographic context information? 

Yes, participants perform more accurately when presented with context information to 

identify the moving object than without context information. The confidence of the 

participants also increases with additional context information.  
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Q2b: Does it matter for the identification of moving object and its behavior if a 

movement trajectory is situated in the correct geographic context? 

Yes, it does matter if the trajectory is situated in its true geographic context, because we 

have seen a decrease in accuracy and confidence when presented with incorrectly located 

trajectories. 
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The first two experiments have revealed that context matters for the identification of 

moving objects and their respective behavior. However, context is not relevant for the 

identification of movement parameters as the first experiment showed. The third 

experiment examines how humans segment static 2D trajectories of movement data and 

to see whether the segmentation by humans can lead to similar results as existing 

computational approaches. The second goal of this experiment is to identify if 

geographic context information is making a difference for participants to segment the 

trajectory. Thus, it is aiming to clarify if generic and behavioral movement patterns 

would require different computational approaches for the analysis of the trajectories, as 

suggested through the separation of generic and behavioral patterns in the taxonomy of 

movement patterns (Dodge et al. 2009). The experiment has two main research 

questions:  

 

Q3a: Are participants segmenting the movement trajectory according to the basic 

movement parameter when no geographic context is provided? 

Q3b: Are participants segmenting the movement trajectory based on activity 

changes, when geographic context information is provided?  

N<B<;(=&%$7'7C&-$#(

A total of 50 participants finished the experiment, 32 male and 18 female. 24 participated 

without context information, and 26 participated with context information. The 

experiment was conducted at three different locations. One third of the subjects 

participated at the University of Twente, at the faculty of ITC in Enschede, the 

Netherlands and were students of the graduate module Òuse, users and usabilityÓ.  

Additionally, fourteen graduate students participated at the Institute for Geoinformatics 

(IFGI) at the University of MŸnster, Germany. The remaining participants were students 

and researchers from the Department of Geography at the University of ZŸrich, in 

Switzerland. 

Two participants were removed from the analysis, because the task (Òsegmentation into 

the largest meaningful unitsÓ) was not entirely understood. This showed in the 

segmentation of the trajectories, which was high above average. The analysis is therefore 

performed with 17 females, and 31 male participants, i.e. 48 participants in total. 22 

participants had no context information during the experiment, and 26 participants had 
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geographic context information. Most participants are (very) familiar with Google Maps 

(95,9%) and also have worked or used GPS devices before (77.1%).  

N<B<A(LFC,%7+,-$&3(G,#7/-(

The independent variable of this experiment is geographic context information. The 

identical data set used for Experiment II (see Chapter 4.2.2) was also used for the set-up 

of this experiment. In contrast to the previous experiment, however, we use a between-

subject design, i.e. students either perform the segmentation without any context 

information, or with context information. Each participant had to segment all 16 

movement trajectories, as listed in Table 1 on page 69. The segmentation task follows 

prior work by Zacks (2004) where participants segmented animated displays of moving 

entities. In our study, participants respond by placing circles for the segmentation on the 

depicted trajectory into the Google Maps API display. We use circles for two reasons: 

First, we would like to capture when something has happened, such as a change of 

direction, rather than splitting this particular moment up. Second, we would like to make 

sure that the data is easily analyzable even if participants do not hit the exact same 

location (coordinate wise). In the remainder of the thesis we use the terms breakpoints or 

segmentation points synonymously to describe the placement of circles by the 

participants. 

The technical design of the experiment is slightly more complex than the preceding 

experiments, because participants are not presented with an online questionnaire but are 

asked to draw circles into the display to segment the shown movement trajectories. 

Google Maps API and JavaScript were used to display the trajectories and to allow the 

drawing of circles. For each stimuli, two files are important, namely a *.php file (as an 

example called track.php) that each stimuli has individually and a general functions.js file. 

The track.php file opened the stimuli and task that participants had to do. It also 

provided the radio buttons to allow circles to be drawn, and contained another question 

regarding participantsÕ confidence.  

In total 64 track.php files were generated, 32 stimuli without any context information, 

and 32 stimuli with context information. From the two sets of 32 displays, I generated 

two identical sets of 16 stimuli, but in a different order. The order of the series was 

determined by a random number generator (www.random.org). I therefore had four sets 

of experiments (Experiment_C1, Experiment_C2, Experiment_H1, Experiment_H2), 

which the experiment leader assigned randomly to each participant. C1 and C2 are with 
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context information, while H1 and H2 are hiding geographic context information. The 

experiment was implemented on a server at the Department of Geography and was 

tested in pilot experiments multiple times. The full JavaScript code and the code for one 

of the stimuli can be found in the Appendix of this thesis.  

The experiment was administered on personal computer with a standard Windows XP 

interface on a 17-inch color display. The screen resolution was set to 1280x1024 pixels. 

The experiments in Enschede and Zurich were conducted in a small office space, and in 

an empty computer lab at the University of Muenster.    

N<B<B(=%1',4*%,(

Each participant was tested individually. The participants were welcomed and thanked 

upon arrival at the experiment location. After being seated in front of the computer, 

participants were introduced to the test set-up and instructed that they only need a 

mouse to do the experiment and that the experiment website sometimes needs a few 

moments to load the next page. Participants were asked to submit each response only 

once and be patient for the next stimulus to appear. They were not able to see the 

browser bar at the top of each browser, as it contained relevant information about the 

stimulus. The experimenter was present during the experiment and available for 

clarifying questions and potential technical issues.  

A welcome screen explained the participant what the experiment is about and that it is 

part of a dissertation project. Also, they were informed about the data collection and that 

the information obtained will be kept anonymously and confidential. In a next step, 

before starting the actual experiment, participants were introduced to the interface by a 

demo to familiarize themselves with the display. During the demo, questions were 

answered to clarify the task and to explain how the drawing of the circles work if 

necessary. Once the participants felt familiar with the display, they proceeded to the 

actual experiment.  

The participants of the experiment are presented with digital trajectory displays and are 

asked to intuitively segment the trajectory into the largest units that are natural and 

meaningful to them. Figure 54 shows the display with the task participants are presented 

with and shows how specific areas of the trajectory are segmented by the circles. After 

the segmentation task, participants are asked to rate their confidence on a five-point 

Likert Scale (Tastle and Wierman 2006) ranging from very confident (5) to very 

unconfident (1). All participants segment 16 trajectories, before answering demographic 



Assessing the Relevance of Context for Visualizations of Movement Trajectories 
 

 

!
!

-.

questions. I have asked participants about their sex, age, their familiarity with Google 

Maps and if they have worked with GPS data before. At the end of the experiment, 

participants were thanked for their time and effort.  
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In total 50 participants finished the experiment, having drawn a total of 6695 points. The 

workflow of the data preparation is depicted in Figure 55 and will briefly be described in 

the next section.  
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Collected response data of the experiment was stored on the server, with one directory 

for each participant. Each directory included three text files, namely timestamps.txt, 

data.txt, and demographics.txt. The timestamps file contains the start and end times for 

each stimuli, i.e. when the participants started to segment the trajectory and when the 

submit button was pressed. Demographics.txt included the answers to the four 

demographic questions. The most important file is the data.txt, which includes the 

sequence for all circles drawn for each stimulus per participant and the coordinates of 

each drawn circle. In a pre-step all pilot experiment files were deleted. The training of the 

participants with the demo did not generate any files. For all other files a cross-check was 

made if the start and end times of the experiment match the start and end times noted 

down by the experiment leader. The coordinates of the trajectories and of the drawn 

points from the without context condition were re-transformed to its original location (as 

the trajectories were displayed in the ocean instead of the mountains) to be able to 

spatially compare the segmentation points of both context conditions. The next data 

preparation step included the aggregation of many user files into two large *.csv files data 

with a small python program. The first file, called datatable.txt, contains the following: 

filename, stimulus name, start and end times from the timestamps.txt, the coordinates of 

the points, and a value for participantsÕ confidence. The filename basically represents the 

participant name as each participant generated a folder with its own sequence of letters 

and numbers, e.g. 4c2a0f3c8d0ff. A second file contains the filename, as well as the 

demographic data from the demographics.txt. The datatable.txt file could then be 
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imported to ArcMap to graphically display the results. Initially, the representation of the 

data was quite cluttered and crowded due to so many points, but sorting the data 

according to the stimulus name and then creating layers for each stimulus helped to 

display only the relevant data for each stimulus. The camp symbols were also loaded into 

ArcMap again to compare context information to the drawn circles.  

Calculating clusters for each stimulus out of the points was an important step to identify 

and compare the number of circles spatially and to prepare them for the statistic analysis. 

The ArcMap model builder (Figure 50) was used to generate the clusters. The model 

consisted of multiple steps, and is described in more detail in the appendix. Buffers were 

created around the circles with a width of 25m. Other thresholds were tried with 10m, 

50m, and 100m but did not deliver valuable results. With a 10m threshold, for instance, 

each point was marked individually, while with 100m all points were connected to a 

single cluster. The 25 m buffer seemed also appropriate to the resolution of Google 

Maps, i.e. the spatial resolution available for this area. The buffer was necessary to 

compensate for the fact that participants would place the circle at the same spot, but 

probably will not hit the exact same coordinates.  

 

What I wanted to find out is participantsÕ reasoning for the segmentation of trajectories. 

I therefore look at the most common clusters and evaluate which criteria participants 

have applied based on the added comments from Experiment II to identify possible 

criteria. The criteria I used for the evaluation were three generic and three behavioral 

categories. The generic categories were change of direction, change of speed, and spatio-

temporal complexity, while the context categories are change of altitude, camp symbols, 

and a change in activity. Change of speed meant if the speed was changed visibly, i.e. if 

the trajectory got thicker and the line showed more points. Spatio-temporal complexity 

means when the trajectory intersects at a point, which happened mainly in the piste data, 

or if the trajectory changed the direction in short intervals. Change of altitude means if 

speed and direction did not change, but a point was made where the map indicated a 

steep cliff. This category could only be measured for the participants with context 

information and basically only happened when the trajectory was not located in its 

correct geographic context. The category camp symbol stands for all points that were 

made next to a camp symbol and change of activity means an obvious change, such as 

the difference between riding a ski lift and skiing, as well as hiking up, skiing down, or 

using the car in the tour data (if available). Change of activity was coded for both 
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conditions, because the trajectory looked different in both conditions and suggested a 

change of activity, even though participants without context information could not infer 

the actual activity from the topographic map. All categories were added to the tables as 

new attributes.  

Evaluating all clusters would not have made sense, as I want to identify a main trend of 

reasoning participants might have. I therefore calculated a threshold to categorize only 

relevant clusters. To find the threshold I calculated the mean for the frequency of points 

per cluster. I then evaluated all clusters where the frequency of points was larger than the 

mean. With this method all stimuli were evaluated according to an individual mean, i.e. a 

specific mean for each stimulus. This is sensible, because some trajectories are longer 

than others and therefore also have completely different mean number of points and 

thus a different mean of points per cluster. I coded the clusters based on the mentioned 

categories with 1 when the category was true for this cluster, and 0 if it was false. As an 

example, imagine cluster A in Figure 56. At this point, we can clearly see the activity 

changes (from ski lift to ski), the direction changed (almost 180¡), and the speed changed 

(from a thick line to a dotted line). We cannot identify a change in altitude (at this 

particular point), nor specific spatio-temporal complexity (no intersections or other), nor 

are camp symbols at this point (not visible in this representation, but camp symbols 

never appeared at turning points, as described in the section before). I therefore coded 

the table in Figure 51 with 1 1 0 0 0 1.   
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Change_dir Change_speed Complexity Change_Alt Camp Change_Acti 

1 1 0 0 0 1 

!"#$%&'IJ )'?,'&.10@;&'+/'&21;$1-",#'5;$7-&%7'

Once the evaluation of the clusters is done, the table is joined with the larger total_ data 

table through the variable cluster. The joined table is then exported as a dbf to be able to 

open it later in SPSS.  

The next data preparation steps are all done in SPSS and are mostly necessary for the 

statistical analysis of the experiment. First of all, the *.dbfÕs are opened in SPSS and all 

individual stimuli tables are joined to one large data file by adding cases. Context was 

added as a variable and was coded 1 if the stimuli were seen with context information, 

and 0 if the stimuli were seen without context information through a simple SPSS syntax 

file. The data was then aggregated in four different files, namely track_cluster.sav, 

confidence.sav, movementparameters.sav, and track_pointsperpers.sav, to allow analysis 

according to four main foci (for comparison see Table 3).  

V13;&'>)'?##%&#1-&6'61-1'/";&7'1,6'-=&"%'1,1;R7"7'/+5$7'

File Analysis Focus 

Track_cluster.sav Number of clusters, points per cluster 

Track_pointsperpers.sav Number of points per person, per stimulus 

Movementparameters.sav Number of points per category of movement 

parameter 

Confidence.sav Confidence for each stimulus 
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The track_cluster.sav file allows the analysis of the number of clusters for each stimulus, 

the mean, minimum, and maximum number of points per cluster for each stimulus, as 

well as the number of points for each cluster. The track_pointsperperson.sav was 

generated to focus on the number of points for each stimulus, and the mean, minimum, 

and maximum number of points per person per stimulus. The movementparameters.sav 

holds the number of points that were placed for each category. The confidence.sav 

aggregates the data according to the participants and allows analyzing their confidence 

ratings for each stimulus.  

Finally, to make the different stimuli comparable, they also had to be recoded. For 

example, Tour1 from the two conditions with context information, as well as from the 

two conditions without context information, had to be aggregated into a single variable, 

called Tour.  

With these data processing steps, I have prepared the data for a spatial analysis with 

ArcMap, as well as statistical analysis with SPSS. In the next section, I highlight the 

results of the statistical analysis before highlighting some spatial characteristics.  

N<B<N(K,#*3$#(1.(>$&$7#$7'&3(!-&3H#7#(

The next section reports the results for the points per person made for the stimuli.  

Similar to Experiment II, I have also calculated the differences in means depending on 

the correctness of spatial reference, i.e. if the trajectory is located at its correct geographic 

location, or if it is placed incorrectly in the environment (for explanation, see Chapter 

5.2.4). In this case, the path type is not considered, i.e. a positive tour can be an open or 

closed path as long as the trajectory is correctly placed. The mean number of points per 

person and stimulus does not differ very much between the different conditions 

(compare to Figure 57). The results indicate that the only significant difference is with 

true, i.e. correctly placed piste data from skiing on slopes.  
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After an initial exploration of the data, I found that the data is significantly non-normally 

distributed (significance value .00, p<.05). The mean number of points that participants 

have drawn per trajectory is 8.36. Looking at the histogram (Figure 59) and the box plot 

(Figure 58) reveals two outliers, with a mean of 44.19 and 23.81 points per trajectory. As 

mentioned earlier, these participants were deleted from the analysis (as explained in 

Chapter 4.3.1), because the task was misunderstood (i.e. segmenting the trajectory into its 

largest meaningful units).  
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A test for normality with 48 participants confirms the suspicion that the data is still 

significantly non-normal with significance of .00. Splitting the file according to context, 

hoping that this causes the bimodal distribution, also showed that the data is significantly 

non-normal. The histogram (see Figure 60) shows the bi-modality of the data.  
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The bi-modality of the data does not allow parametric testing. Several approaches have 

been tested to understand why the data is bi-modally distributed. I have split the file 

according to all demographic characteristics, such as gender, age, the familiarity with 

Google Maps, as well as the usage of GPS data. None of these factors seems to explain 

the bi-modal distribution of the data.  

Another possibility to understand why the data is bi-modally distributed is to find any 

response commonalities among all participants with a mean number of points larger than 

10 (i.e., where the bi-modality of the data starts), which are ten participants. Eight of 

these participants were assigned to the first sequence/order of the experimental stimuli, 

thus starting with Tour 1. Tour 1 is the largest trajectory and also shows most changes of 

speed and direction. Starting with the longest trajectory possibly influenced participantsÕ 

segmentation in successive trajectories. That said, it obviously did not matter which 

context condition was applied, because out of these eight participants, four were from 

the condition without any context information, and four were with context information.  

I also tested how large the influence of this bimodal distribution was by running the 

analysis without these ten participants. A test revealed a significantly normal distribution 

(sig .688) for this data. A one-way analysis of variance (ANOVA) was calculated to assess 

if context influences the segmentation of trajectories. The ANOVA reveals that context 

is not significant, F(1,37)=1.726,p=.197. This result means, that even with a normal 

distribution and a parametric test, context does not matter for the segmentation of the 

trajectory, as the mean number of points for both conditions is not significantly 

different. The mean number of points without context information is 5.86 points and 

with context information is 5.05 points per participants per stimulus with only 38 

participants.  

Splitting up the entire file according to the sequence of the stimuli, i.e. ContextA versus 

ContextB, does not make sense for several reasons: First, there are no significant results 

for context in the ANOVA, even if the data was normally distributed. Second, when 

examining the ten participants responsible for the bi-modality it becomes obvious that 

they were distributed equally among the two context conditions. And third, splitting the 

file would mean that we do not even have twelve participants for each condition, i.e. per 

context per sequence, which is not a large enough sample for an ANOVA. 

 

Since the data is not normally distributed, we run a non-parametric test, in this case the 

Kruksal-Wallis test, because the number of participants for each condition is now a little 
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less than 25. The test is not significant for context with F(1).585, p<.05 (significance 

.444). Having context information therefore does not matter when segmenting a 

movement trajectory. The mean results are 7.53 points per stimulus for the condition 

without context information, and 7.11 points per stimulus for the condition with context 

information. A Kruksal-Wallis test examines whether any differences appear for 

behavioral context or path type. The test reveals that the means for neither activity, nor 

path type are significantly different, with the following significance values: Tour=.331, 

OTour=.534, OPiste=.305, p<.05. Only for the activity skiing on slopes (Piste) can we 

find a significant difference, .020,p<.05. Figure 61 confirms these results as we can see 

hardly any differences for the activities (either tour or piste) and path types (open stimuli 

are coded with O) when presented with or without context information (also see Table 

14 for comparison). The activity tour, for instance, has a mean number of points per 

stimuli of 10.42 without context information, and a mean number of points of 9.45 with 

context information.  

 
!"#$%&'J( )'F&1,',$03&%'+/'3%&1:@+",-7'/+%'15-"2"-R'1,6'@1-='-R@&'

I therefore conclude that context does not matter for the segmentation of movement 

trajectories.  

 

Confidence 

Next, I report the results of participantsÕ confidence ratings. Confidence had to be rated 

on a five-point Likert scale, in which one means very unconfident or very unsure and five 

means very confident with their segmentation of the trajectory.  

10
.4

2 

7.
31

 

6.
18

 

6.
20

 

9.
45

 

6.
73

 

4.
90

 

7.
35

 

0 

2 

4 

6 

8 

10 

12 

14 

Tour OTour Piste OPiste 

B
re

ak
po

in
t f

re
qu

en
cy

 

Mean number of  breakpoints for path type and 
activity, n=48 

without context with context 



Assessing the Relevance of Context for Visualizations of Movement Trajectories 
 

 

!
!

%.. !

Surprisingly, confidence decreases with context information. The grand mean for 

confidence without context information is 3.69, while the grand mean with context 

information is 3.51. However, the difference is not significantly high.  

Figure 62 compares the confidence means according to activity and path type and shows 

that there is hardly a difference visible between the two context conditions, i.e. with or 

without geographic context information. There are almost no visible differences between 

the activities (tour and piste), or between the different path types, such as open piste and 

piste. In other words, the behavioral context (i.e activity) and the path type do not 

influence the segmentation of movement trajectories.  

 
!"#$%&'J8 )'F&1,'5+,/"6&,5&'/+%'@1-='-R@&'1,6'15-"2"-R'/+%'[.@&%"0&,-'PPP'

The result shows an opposite trend though when examining participantsÕ confidence 

depending on the correctness of the geographic context. When presented with ski 

touring stimuli confidence decreases with context information, while confidence 

increases with context information when stimuli from skiing on slopes are shown. 

Confidence decreases also when presented with a false tour as compared to a correctly 

located tour. Interestingly though, negative piste stimuli increase participantsÕ confidence 

as opposed to a positive piste stimulus. In spite of this, when looking at these results 

graphically, we have to keep in mind that the differences are rather small when it comes 

to the actual numbers, as Table 16 confirms.   
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The data distribution for confidence, D(48)=.001,p<.05 is also significantly non-normal. 

The Mann-Whitney test reveals that the distribution of the confidence mean is the same 

across categories of context. Confidence ratings from participants without context 

information (mean rank=26.64) did not significantly differ from participants with context 

information (mean rank=22.69), U=239.00, z=-.975, p<.05(.330).  

N<B<Q(K,#*3$#(>C&$7&3(&-&3H#7#(

The drawn points are also analyzed spatially with ArcMap by organizing the location of 

the segmentation points into clusters. Clusters are defined when more than one 

segmentation point has been drawn at the same location. The spatial analysis presents 

evidence that less segmentation points and clusters have been made for the activity skiing 

on slopes (M=28 clusters per trajectory) than for the activity ski touring (M=36 clusters). 

Consequently, the results of the spatial analysis are reported by behavioral context 

condition, i.e. first the results for the activity tour, followed by the results for the activity 

piste skiing. For each stimulus we examine the results according to the influence of 

context, the path type, and the correct geographic context. 

For the activity ski touring we can state that in general slightly fewer clusters were 

generated when participants were presented with the stimuli with geographic context 

information (see Figure 64). For the closed tour trajectories we have a mean of 68 

clusters without context information, and 49 clusters with context information. The open 

paths have fewer clusters in both conditions, but follow the trend that less clusters 

appeared with context information (M=28) than without context information (M=36). 
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Spatially however, the clusters are at the same locations in both conditions as Figure 65 

and Figure 66 present (see page 100).  
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The spatial analysis of the ski touring stimuli show that only three to four clusters for 

each trajectory are chosen by all participants. All clusters are highlighted in yellow and 

the top three to four clusters are marked with black surroundings. For these examples of 

tour stimuli the clusters chosen by all participants are at the beginning and the end of a 

trajectory. Also the mountain peak is chosen, probably for the fact that the change of 

direction is very high at this point, as participants without context information also chose 

this spot. In general we can state that the clusters are mostly at points where the 

trajectory has a change of direction. This is also true for the other tour stimuli, where the 

main clusters were generated at the beginning and the end of each trajectory.  
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Similarly, even when comparing the correctness of geographic context, we can hardly see 

any differences between the two conditions. Following the general trend that the clusters 
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appear at the same locations, we can only see that fewer clusters appear when context 

information is available. There is an equal number of clusters between correctly located 

trajectories (M=52 cluster) and incorrectly located trajectories (M=52 clusters), thus no 

difference is existent. We use one of the ski tour stimuli to show the similarities and 

differences in Figure 66 and Figure 67. Again, most participants chose the same 

segmentation points, namely where a change of direction has happened, and thus similar 

clusters in both conditions appear. We can conclude from these results that the 

distribution of clusters is independent of context, behavioral context, path type, and the 

correctness of the geographic context.  
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For the activity skiing on slopes, basically no difference can be identified for the two 

context conditions. Fewer clusters appear for closed stimuli with context information 

(M=16) than without context information (M=21), and more clusters appear for open 

stimuli with context information (M=20) than without context information (M=18) as 

shown in Figure 68.  
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Again we can see similarities for the location of clusters, as Figure 69 and Figure 70 

show. Independent of context information the clusters are located at the same spots. 

Four clusters emerge where all participants have placed circles. These clusters are situated 

mainly at the beginning and end of the ski lift, thus at the end of the straight lines. Again, 

the same clusters show up, independent of the context condition.  

The results of the spatial analysis relate well to the result of the statistical analysis that 

context does not matter for the segmentation of the trajectories. Figure 69 shows, as an 

example, the clusters made for the Piste1 stimulus. This stimulus serves as a prototype 

for the piste trajectory as the clusters are almost identical in all stimuli for this activity 

due to the particular shape of the trajectory with its bent and straight lines. The four 

clusters made by all participants are highlighted in black in Figure 69 and Figure 70.  
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When examining the influence of the correctness of the geographic context, we can see 

that no influence is visually identifiable as the clusters emerge at the same locations, as 
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Figure 69 and Figure 70 show. Again, the top four clusters are situated at the beginning 

and end of the straight lines and were identified by all participants. The average number 

of clusters is also relatively stable as Figure 64 illustrates. We can only see a decrease of 

clusters when the trajectory is placed in its correct geographic location, and the 

participants are provided with context information.  
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The results of the spatial analysis lead to the assumption that basic movement 

parameters, such as change of direction, or speed, are key factors for segmenting the 

movement trajectories. The majority of the clusters were placed independent of the 

context condition and independent of the correct or incorrect location of the trajectories 

at the same spots on the trajectory. Analyzing the categories of the clusters, our 

assumption gets confirmed. Most clusters are characterized by changes of direction and 

changes of speed of the moving object, as Figure 72 shows. Change of activity was coded 

for both conditions, as the shape of the trajectory indicates a larger change in activity, 

such as the straight and bent lines in the skiing on slopes condition. However, the 

parameters camp symbols and change of altitude are inherently context dependent, as 

they are only presented in the context condition. Both parameters failed to have attracted 

the participants to segment the trajectory at these locations. The cluster categories 
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therefore also present evidence that context does not matter for the segmentation of 

movement trajectories.  
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The results of the statistical and the spatial analyses show that context does not influence 

participantsÕ segmentation of movement trajectories. Participants do not make fewer 

segmentation points when context information is available or choose different 

segmentation locations, compared to the condition without any context. This result 

suggests that participants select one segmentation method, and use it consistently 

throughout the experiment. An example would be a participant who has chosen to 

segment the trajectory according to changes of directions. Since participants have only 

been exposed to one context condition, I interpret that the segmentation of trajectories 

follows an intuitive reasoning, such as the segmentation according to change of direction. 

The analysis of confidence confirms this result, as the difference between the two 

conditions is minimal. A reason why confidence does not matter might be explained 

through the task itself. Participants employ a reasoning strategy for the segmentation that 

seems reasonable to them, and therefore feel confident, as participants indicated during 

the experiment. Most clusters are based on geometric movement parameters, which 

suggest that the segmentation is based on the path geometry. This result is supported by 

studies from cognitive science (Shipley and Maguire 2008), who found that the 

segmentation is based on the path geometry in a segmentation experiment. However, the 
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locations where points were drawn show very similar clusters in both conditions. 

Statistical and spatial analysis have not revealed any effect of the path type in this 

experiment, as opposed to an earlier assumption by Shipley (2008) that the geometric 

shape of the path is cognitively and perceptually different. 

Behavioral context does have an influence on the number of segmentation points. In 

general, more segmentation points were made for the activity ski touring than skiing on 

slopes, but this effect is possibly due to the fact that the ski touring trajectories are 

longer. Also, the straight lines in the ski piste data naturally inflict the segmentation at the 

transition from straight to bent lines. Since all piste stimuli had 2-3 straight lines, this 

naturally means an average of 6-8 points. Confidence values were the same for both 

behavioral context conditions, and therefore no direct effect can be observed.   

The true location of the trajectories within the geographic context does not influence the 

segmentation. The results of the confidence analysis confirm that the true location of the 

movement trajectory does not have any significant effect, as participants are equally 

confident in both conditions. As the spatial distribution of the clusters is very similar in 

both conditions, we believe participants used the same segmentation method for all 

tracks without specifically considering context.  

I can conclude the summary by answering the two research questions in the following 

way:  

 

Q3a: Are participants segmenting the movement trajectory according to the basic 

movement parameters when no geographic context is provided? 

Yes, participants mostly use change of direction and change of speed to segment the 

movement trajectory. However, this is independent of the context condition, but also 

refers to the participants with context information.  

 

Q3b: Are participants segmenting the trajectory more coarse-grained, based on 

activity changes, when geographic context information is provided?  

No, participants are not using the activity changes as the major segmentation method 

when context is provided. Also participants with context information segmented the 

trajectory mainly according to basic movement parameters, as our analysis of the spatial 

clusters has shown.  
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This chapter has examined three human subject experiments, including their 

methodology and results. The main motivation for doing these experiments was to 

understand the effect of contextual information on the exploration and analysis of 

movement data. All three experiments have focused on identifying if context information 

is relevant for the identification of a moving object and its behavior, as well as the 

identification of basic movement parameters.  

The results of the experiments can be split into three key findings. First, contextual 

information, in the form of relevant information as well as geographic context, seems to 

help participants to identify a moving object and its behavior more accurately and more 

confidently. Second, context information is not necessary for participants to identify 

basic movement parameters, such as speed, distance, and direction. Also, the 

segmentation of movement trajectories is done independently of context information 

and participants have based their segmentation on basic movement parameters, such as 

change of speed, or change of direction. Third, the incorrect location of the movement 

trajectory seems to suggest other potential moving objects and their behaviors, i.e. the 

geographic context influences participantsÕ response accuracy and confidence.  

A potential explanation for these contradictory results is potentially that the analysis task 

determines if context information is necessary for the analysis or not. Context seems not 

to be required to identify geometric, generic movement parameters of locomotion, i.e. 

generic movement patterns. However, the analysis of goal-directed movement, i.e. 

behavioral movement patterns benefits from context information. The big difference 

between generic patterns and behavioral patterns is therefore the question ÒwhyÓ to 

understand the process of the underlying behavior rather than understanding the 

geometric characteristics of the trajectory, thus explaining goal-directed movement rather 

than locomotion.  

By reporting the main findings from the experiments, I have now set the stage for a 

more in-depth discussion. 
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Trying to get an understanding how humans comprehend spatio-temporal data and their 

visualizations is a key challenge to improve visual analytics tools. I will now revisit the 

framework and will discuss the relevance of the empirical findings for each individual 

perspective of the framework.  

Q<;(G&$&(=,%#C,'$7@,(

The experiment findings suggest that the analysis task influences the necessity of context 

information, and particularly the identification of behavioral movement patterns benefits 

from the integration of context. The empirical results of this research suggest that the 

separation into generic and behavioral patterns in the taxonomy of movement patterns 

(Dodge et al. 2008) is sensible, since humans also seem to differentiate between two kinds 

of analyses, namely an analysis of movement parameters (i.e., geometric low-level 

analysis), or the understanding of the meaning of the movement parameters (i.e., 

semantic analysis) to identify objects and their behaviors. The shown movement pattern 

is in both instances the same, but the analyses have two different goals, which is reflected 

in the separation of two kinds of patterns (i.e., generic and behavioral) in the taxonomy 

of movement patterns. Since the behavioral patterns are basically generic movement 

patterns plus the inference of meaning, the term semantic patterns would be more 

suitable (as described in Section 3.1). 

The experiment findings suggest that humans segment trajectories according to similar 

principles as computational geometry algorithms do. This in turn would mean that work 

from geographic knowledge discovery (Laube et al. 2005; Laube and Purves 2006) and 

data mining (Benkert et al. 2006; Buchin et al. 2009; Gudmundsson et al. 2004) is valuable 

for the detection of basic movement parameters, describing locomotion and their generic 

movement patterns. Movement data algorithms that analyze the geometric properties of 

movement trajectories can therefore be considered sufficient and indeed seem to support 

human analysis and understanding of movement data.  

Although the formalization of generic movement patterns works without context 

information, we can understand the semantics of the movement, and therefore the actual 

movement process, only with context information. Our findings from the first two 

experiments suggest that movement parameters alone cannot describe a behavioral 

movement pattern, i.e. adding meaning to the geometric description of the trajectories. 
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Similarly to Klippel et al. (2009; 2010), our empirical results suggest that the 

understanding of goal-directed movement can only be achieved by adding context 

information, and thus the algorithms might not be sufficient yet. This result also means 

that geographic information of a moving object should not just be integrated as mere 

attribute information, but also has to be explored as the inherent motivation of an object 

to move in a certain way. Hence, semantic trajectory modeling (Yan et al. 2008) might be 

a good starting point, because geographic context is explicitly integrated through an 

ontological module. In this way, importance is not only given to the data collection 

details, but also the objects domain.  

The data analysis process could potentially consist of two complementary steps. A 

geometric analysis supported by algorithms allows the efficient characterization and 

geometric description of trajectories, while a semantic analysis with context information 

allows the user a process analysis to understand movement behavior.  

Humans use movement parameters to identify meaningful change points of movement 

that are represented in the trajectory of movement, for instance change in direction. 

Since humans understand spatio-temporal processes and movement by structuring the 

experience into events (Schwan and Garsoffky 2008; Shipley and Zacks 2008; Zacks and 

Tversky 2001), the results from the segmentation experiment suggest that the events of a 

movement trajectory are reflected by the basic movement parameters. From a data 

perspective, Worboys and Hornsby (2004) have already shown that a geospatial event 

model allows a more powerful modeling approach to dynamic geospatial phenomena. 

Knowing that event points can be easily identified computationally allows an easier 

identification and representation of event points in a large data set. Consequently, our 

empirical findings support the integration of event points as a very promising approach 

for the exploration, analysis, and representation of generic movement patterns.  

Q<A(51/-7$7@,(=,%#C,'$7@,(

Literature from cognitive science provides first evidence that humans segment 

movement processes into events (Kurby and Zacks 2008; Schwan and Garsoffky 2008; 

Tversky et al. 2008). In the last experiment, we also find that participants have used 

change points, i.e. basic movement parameters, to segment the trajectory independently 

of context information, and have mainly used Ôchange of speedÕ and Ôchange of directionÕ 

to segment the trajectories. These results are consistent with the postulations that change 

of location (Schwan and Garsoffky 2008), and movement changes, such as speed 
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(Tversky et al. 2008) influence the segmentation of events. This result makes sense also in 

the light of our conceptual understanding of motion. Time is perceived through change 

(Evans and Green 2006) and therefore the most important information lies at the change 

points of a trajectory. As the change point is conceptually grounded in the source-path-

goal schema, it may be particularly useful to highlight change for the effective and 

efficient data analysis of movement.   

Cognitive science uses segmentation with break points to capture events, but therefore 

the most interesting information lies at the borders of an event (Schwan and Garsoffky 

2008; Shipley 2008). By choosing circles in our experiments to segment the trajectories, 

we are able to actually capture the moment of change, where something important has 

happened, rather than splitting the moment up. Originally, using circles gave the 

possibility to capture break points; especially if participants chose the same location, but 

the center of the circle (and thus the coordinates saved in the data file) did not have the 

exact same coordinates (as described in Section 5.4.4). In this case the event itself is 

captured and we could identify Ôchange of directionÕ and Ôchange of speedÕ as the most 

common reasons of participants for the segmentation locations. Consequently, the 

approach is useful to identify event points, i.e. the points of a trajectory with the highest 

meaning for participants, which can then be used to be highlighted for data mining and 

visualization. 

Segmentation of movements is also influenced by goal-directedness and familiarity 

(Schwan and Garsoffky 2008; Zacks 2004). Context information possibly provides a solid 

ground for familiarity, as the experiments have shown that incorrectly placed trajectories 

lead to less confidence and accuracy, as the second experiment has shown. Zacks (2004; 

2009) proposes that the segmentation of movement depends on the movement 

parameters for fine-grained segmentations, such as change of direction or change of 

speed, as well as on conceptual features for coarse-grained segmentation, i.e. inferences 

about the moving objectsÕ goals. The analysis of confidence in the third experiment 

confirms this result, as the difference between two context conditions is minimal, 

possibly because participantsÕ employed their own plausible reasoning for the 

segmentation, and therefore felt confident. The coarse-grained segmentation of events 

according to Zacks et al. (2009) is based on conceptual ideas about the moving agent. 

The first two experiments have shown that adding context increases the conceptual 

understanding of the moving object and its behavior, while the understanding of 

movement parameters is based on geometric approaches. Maybe context information is 
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especially relevant for coarse-grained segmentation of movement behavior, but less 

relevant for fine-grained segmentation, i.e. for the understanding of movement 

parameters.  

Within the cognitive perspective, we have gained insights into which extent context 

information influences the conceptualization of movement in visualizations, namely that 

it is useful for the identification of an object and its behavior, but not necessarily as 

important when identifying movement parameters. The understanding of spatio-

temporal processes, particularly movement, might therefore be described as a two-step 

process. In a first instance, participants might detect the basic movement parameters and 

get an understanding of the geometry of movement trajectories. In a second step, the 

geometric parameters can potentially be combined with context information about an 

object, as well as the usersÕ previous knowledge and analysis goal, to get a deeper 

understanding of the movement process. This process might be comparable to 

perception and cognition, in which perception is comparable to the understanding of 

geometric movement parameters, and cognition provides the understanding of 

movement behavior.  

I have to acknowledge that context as defined for this thesis only captures a narrowly 

defined set of factors, excluding factors such as previous knowledge, or task that also 

determine and facilitate humanÕs pattern recognition abilities, as we will discuss in 

Section 6.5.  

Q<B(I7#*&37J&$71-(=,%#C,'$7@,(

The amount of context information needed in a visualization seems to be dependent on 

the userÕs analysis task. To detect and extract basic geometric movement parameters, and 

thus getting an overview on a generic pattern, context information is not necessary, and 

thus visualizations can be kept as simple as possible, as the results of the first and third 

experiment indicate that context information did not improve the response accuracy for 

movement parameters. To analyze the movement process that generated the trajectory, 

thus getting an understanding of the moving object and its behavior, seems to require 

more information in the visual display, as the results of the second experiment have 

shown. Especially the responses to the open questions in the second experiment have 

shown that the geographic context enabled participants to consider the moving object 

and its behavior more specifically, and response accuracy and confidence increased. It 

therefore seems valuable to include geographic context into visualizations of movement, 
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because it enabled participants to leave the pre-attentive level of seeing a pattern, to 

actually analyzing the movement process and drawing conclusions about the object and 

its behavior. However, it is not only the amount of context information that influences 

the response accuracy, response times and confidence of participants, but also the kind 

of context information. We have seen in these experiments that the inclusion of 

geographic context provides an average response accuracy of 57%, while the inclusion of 

title and legend leads to a response accuracy of 54% for the identification of the moving 

object. This result potentially indicates that an inclusion of geographic context in a 

graphic display might be more fruitful than a detailed legend and title. The result could 

also mean that visualizations that show movement data on a map are possibly more 

effective than visualizations without a map, such as the space-time cube (HŠgerstrand 

1970). The re-discovered space-time cube shows movement in space on a two-

dimensional plane, which enabled Ren and Kwan (Ren and Kwan 2007) to discover 

interactions between movement behavior in the real and virtual world. The explicit 

representation of the location of movement might therefore be the success of the space-

time cube in recent approaches (Kraak 2003; Kwan et al. 2003; Neutens et al. 2008), at 

least when showing few trajectories. On the other hand, the basic movement parameters, 

or events from a cognitive perspective, are not visualized explicitly in the space-time cube 

and might therefore hinder the effective recognition of movement patterns. Knowing 

from the experimental results that change points in a trajectory reflect events from a 

cognitive perspective, visualizations could potentially be improved by explicitly modeling 

these event points.  

Using event-based approaches is common in geovisualization, as they actively integrate 

cognitive principles (Aigner et al. 2008; Beard 2006; Beard et al. 2007; Kapler and Wright 

2005; Yattaw 1999). In Aigners (2008) approach, for instance, users specify an event 

according to spatial, temporal, or attribute dimensions, in order to be able to detect the 

event later on. Employing computational algorithms to detect change points and suggest 

them visually to the user might be a useful enhancement to the tool. The user could then 

rate suggested events according to their importance with respect to the analysis task at 

hand.  

Event points in a movement trajectory reflect the source-path-goal schema as our 

conceptual understanding of movement processes. Visually representing this 

understanding in a suitable metaphor could potentially increase the user experience and 

lead to a better understanding of spatio-temporal processes and behavior. In a static 
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environment the change points of a movement trajectory could be visualized as time 

stamps on a journey and could potentially be linked with multiple static frames. It also 

means though, that movement might best be represented though interactive, dynamic 

visual displays as they represent the internal structure of our time experience, for instance 

by representing motion with the metaphor ÒjourneyÓ.  

Visualizations of movement might benefit from the integration of cognitive principles by 

including geographic context information, as well as visually highlighting events, for 

instance through salient colors, to potentially enhance visual analytics tools.  

Q<E(>'1C,(1.($D,(8%&+,21%0(

Already Slocum et al. (2001) have stated that the improvement of visualizations can only 

be accomplished through theory-building, and empirically validated design principles 

(Fabrikant and Lobben 2009). Current visual analytics tools are information rich in 

design, but it remains unclear if they support humans in the exploration of movement 

patterns, as mentioned earlier (Beard et al. 2007; Fabrikant et al. 2008a). A framework to 

improve visualizations of movement is a useful stepping-stone to allow the integration of 

cognitive principles, thus leading to the design of more effective and efficient visual 

analytics tools. By understanding how users conceptualize spatio-temporal data in 

visualizations, we can integrate these findings into a cognitively plausible approach, for 

instance through the visual highlighting of events, or the specific integration of 

geographic context.  

At this stage, the framework is generic enough to support the integration of cognitive 

principles for any kind of movement pattern, such as transportation geography, urban 

planning, or meteorology, since only the inclusion of cognitive principles is proposed but 

no detailed guidelines for specific data are given. Most work, as mentioned earlier, has 

been done in the formalization of generic movement patterns. Combining the cognitive 

approach with, for instance, movement ecology and geographic knowledge discovery 

could potentially lead to the identification of behavioral movement patterns; a key task 

animal ecologists are aiming for. Combining this framework with a framework 

introduced by Nathan et al. (2008) would mean an integration of the environmental 

factors with an analystsÕ cognitive abilities. The literature review in Section 2.2.1 indicates 

that data quantity has been traded for data quality, meaning that we can collect all the 

geometric information of the movement, but the goal of the movement remains 

unknown. The results of these experiments suggest that understanding the movement of 
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an object is more difficult without context information, as response accuracy and 

confidence is lower without context information. Conversely, ecologists are actually more 

interested in the moving agent and its behavior in the first place and not just in some 

generic pattern that describes the sequence of movement parameters but the actual 

behavior. 

Identifying the key factors that influence humansÕ understanding by human subject 

testing is a valuable approach to identify the key elements that improve visual analytics 

tools, such as the inclusion of geographic context or event-based approaches. This work 

therefore opens interdisciplinary research avenues to help solve the big goal of 

understanding movement processes on Earth.  

Q<N(67+7$&$71-#(

A major contribution of this research is the investigation how context influences the 

understanding of movement. However, the definition of context used in these 

experiments is perhaps rather narrow. Using relevant information was inspired by the 

context awareness literature from mobile computing, but this definition seems to be less 

useful for the research goals of this thesis. Geographic context, on the contrary, seems to 

be more relevant as a definition. Two of the experiments use geographic context 

information and one could repeat the first experiment using geographic context 

information rather than relevant context information to investigate whether identifying 

an object and its behavior would be easier with geographic context information also for 

these tasks. Then other relevant contexts, as mentioned in Section 6.2, could potentially 

be examined, such as the spatial and temporal scale of the sampled data, to get a broader 

understanding how context influences the understanding of movement in visualizations. 

The third experiment could have been improved by letting participants indicate why they 

made this particular segmentation, and by labeling the different segments. This might 

have provided additional insights into what participants assume the object and the 

behavior is. In this research, participantsÕ reasoning was inferred from finding 

commonalities between clusters. The categorization of the clusters suggests that the 

segmentation happens according to basic movement parameters and therefore a 

geometric analysis of the path. To address the validity of this assumption one could use 

geometric algorithms to identify change points. If the captured change points form 

algorithms correspond to the points from human segmentation, it would be possible to 

confirm that human and algorithmic conceptualizations of movement data complement 
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each other. This approach would also validate the appropriateness of the algorithms at 

the same time.  

Finally, this work focused on how context influences the analystsÕ understanding of 

movement data. We therefore interpreted how the task of the analysis influences the 

understanding of the data. Perceptual and cognitive skills of the analyst, such as their 

previous knowledge and training, were not further investigated, but an analysis of these 

factors would be beneficial to get a broader understanding how humans perceive 

movement.  
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It was the aim of this thesis to examine how visualizations of movement trajectories are 

understood and how the inclusion of context can help to understand movement patterns. 

First, a taxonomy of movement patterns was developed based on a literature review, 

which differentiates between generic and behavioral movement patterns (Dodge et al. 

2008). The differentiation into two pattern categories is grounded on the assumption that 

generic patterns are applicable to all moving objects regardless of context, while 

behavioral patterns can only be understood with respect to a specific object and its 

behavior (Dodge et al. 2008). Next, I empirically examined whether additional context 

information facilitates the identification of behavioral movement patterns, as suggested 

by the taxonomy of movement patterns. Generic and behavioral patterns initially show 

the same data, and thus also the same pattern. However, generic movement patterns 

work on a low-level analysis, i.e. the identification of movement parameters, while a 

higher-level analysis tries to identify the meaning of the pattern, and thus the behavioral 

pattern. Context information was manipulated by adding relevant information (i.e., title 

and legend) or geographic context (i.e., terrain map) to visualizations of individual 

movement trajectories. The results of the empirical evaluations reveal that context 

information seems not to be a necessary requirement for the identification of basic 

movement parameters and generic movement patterns. Conversely, context information 

is necessary to enhance the exploration of behavioral movement patterns. With these 

findings in mind, I am now revisiting the hypotheses.  
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Throughout the thesis we have tried to test the two following hypotheses, as described in 

Section 3.2:  

HS1: Generic movement patterns can be identified through the identification of basic movement 

parameters, such as speed, distance, direction, and velocity and need no context information of 

the moving object to understand what movement pattern is visible.  

I can partly confirm this hypothesis statement from the findings of the first and third 

experiment, as we have clearly seen that no context information is necessary to identify 
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basic movement parameters. However, we have not tested if participants also understand 

what pattern is visible and if participants would be able to classify the represented 

trajectory into a generic movement pattern.  

HS2: Users need context information of the moving object to correctly identify behavioral 

patterns and understand why the movement has happened.  

This hypothesis can be confirmed by the experiment results of the first and second 

experiment, where we observed an enhanced understanding of the moving object and its 

behavior. The experimental results have therefore also confirmed a conceptual difference 

of generic and behavioral patterns as described in the taxonomy of movement patterns. 

The understanding of movement parameters and the identification of agent and 

behavior, thus ultimately the identification of patterns, is therefore conceptually different 

for users.  

I can conclude that geometric path analyses for pattern extraction is useful to find 

commonalities among movement parameters, but geometric analyses are not useful to 

understand the inherent motivation that caused movement.  
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This research enriches fundamental geographic information science research on space 

and time concepts, particularly the conceptualization of movement visualization by 

studying how humans understand visual displays of movement. The particular scientific 

contribution of this research is two-fold:  

1) The development of the conceptual framework is an interdisciplinary approach 

to integrate knowledge from geographic information science and cognitive 

science, as an approach to enhance visual analytics tools for the exploration and 

identification of movement patterns.  

2) The empirical assessment of context information has shown that it is valuable for 

the user to include context information for the exploration of behavioral 

movement patterns. Using geometric path analyses are effective to identify key 

components of the trajectory and to allow the categorization of generic 

movement patterns.  
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Section 6.5 has shown limitations of the experiments that deserve attention to improve 

future work in this research area.  

U<E<;(9&F1-1+H(&-4(8%&+,21%0(

Combining the data, cognitive, and visualization perspective is a good starting point to 

improve visual analytics tools in a cognitively inspiring way. Integrating it into key 

research areas, such as movement ecology, transportation geography, meteorology, 

hazard evacuation planning, etc., is largely missing, but might potentially result in a more 

general applicability of tools not just for specific research groups.  

Working together with an application domain, for instance movement ecology, would 

have also overcome some general limitations of the taxonomy of movement patterns, 

mainly its incompleteness regarding the behavioral patterns. At this stage, no 

classification exists for the behavioral patterns, but they could be organized by pattern 

structure depending on the involved movement parameters, similar to the generic 

patterns, or according to the moving agent, such as animals, or humans. Identifying all 

meaningful behavioral patterns would be an important step forward and opens cross-

disciplinary research avenues to understand movement behavior. 

The results have also shown that the cognition function (as described in Chapter 3.1) to 

improve visualizations of movement could not yet be solved. Future work is needed to 

coherently identify all cognitive factors influencing the user. This thesis has only studied 

the influence of context on the usersÕ understanding of movement, but cognition and 

perception of a user are far more complex than this simplified model. Identifying user 

needs would contribute to establishing a consistent framework for movement 

visualizations in order to improve the design of visual analytics tools. 
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I have tested in this thesis how context, as a facilitator for previous knowledge influences 

humansÕ understanding of visualizations of movement. While we clearly state that 

context information helps users exploring behavioral patterns, we do not think that 

context is the only factor influencing the understanding of movement data. Other 

cognitive factors, like familiarity and training with handling movement data, and the 

respective representations, have not been investigated. Visual analytics would also benefit 

from understanding which analyses tasks influence the user in what way to help users 
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perform their analyses, such as a narrow identification task, e.g. detection of speed 

changes, as opposed to much broader data exploration tasks.  

The definition of context used in these experiments is fairly narrow and focuses on 

relevant information and geographic reference of the moving object. It would be 

necessary in future work to assess other context definitions, especially the spatial and 

temporal scale of moving objects.  

In our experiments we have tested the identification of moving objects as well as the 

identification of movement parameters. However, we have not tested if actual patterns 

are recognizable by participants. We could imagine a scenario where users have to sort 

visual representations of patterns to get an understanding which key factors are 

important for a respective classification. One classification could be the number of 

direction changes or changes of speed, another specific geographic terrains of moving 

objects. All these classification schemes would ideally lead to a suitable classification of 

movement patterns and could potentially enhance the taxonomy of movement patterns.  

One of the original key challenges though is the representation of large amounts of 

movement data. So far all visualizations in the experiments show one movement 

trajectory from one object, but most visualizations fail when the representation gets 

overloaded and crowded. As a next step it would be necessary to test displays with 

multiple trajectories, to identify when visualizations break down and why.  
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Working on empirically validated design guidelines for movement visualizations also 

remains an open research avenue, as the project has not dealt with the actual integration 

of the findings into visualizations. A major research avenue is therefore the 

implementation of cognitively inspired visualizations. A way to integrate the experiment 

findings would be to detect events through algorithms and then make events visually 

salient for users, for example by applying appropriate visual variables, e.g. color hue or 

motion. This approach would highlight the important information and could potentially 

augment peopleÕs capabilities for pattern extraction and complex spatio-temporal 

reasoning. 
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1) Kšnnen Sie ein Muster in diesem Bewegungspfad entdecken? (yes/no) 
2) Was Ja, was fŸr einMuster kšnnen Sie entdecken? (open text box) 
3) Welches Objekt hat Ihrer Meinung nach diesen Bewegungspfad hinterlassen? 

(animal/human/eyes) 
4) Was hat das Objekt Ihrer Meinung nach gemacht? (food search/ information 

search/shopping/walking/biking/defending) 
5) Wie lang ist Ihrer Meinung nach die Dauer der Bewegung? (1 min/1 hr/1 day/1 

month/1 season/1yr) 
6) Wie gross ist Ihrer Meinung nach die FlŠche die das Objekt gebraucht hat? 

(1qm/ 100 qm/ 1ha/ 10qkm/ 100qkm) 
7) In wie fern halten Sie die folgenden Aspekte fŸr relevant und wichtig fŸr Ihre 

Analyse? (Scale from Gar nicht/wenig/indifferent/viel/sehr viel) 
a. UnregelmŠssigkeiten 
b. Muster 
c. Wendungen 
d. LŠnge 
e. Kreuzungen 

8) An welchem Punkt war Ihrer Meinung das Objekt am langsamsten? (A/B/C) 
9) Beurteilen Sie die Distanz von A zu B und von C zu D. Welche Distanz ist 

lŠnger? (A zu B/ C zu D/Sie sind gleich lang) 
10) Wo denken Sie hat das Objekt eine Pause gemacht? (A/B/C) 
11) Wann hat das Objekt in Ihren Augen beschleunigt? (A/B/C) 
12) Hat das Objekt Ihrer Meinugn nach genauso lange gebraucht von A nach B wie 

von B nach C? (Ja, genauso lang/Nein, lŠnger/Nein, kŸrzer/Ich bin mir nicht 
sicher) 

13) Wann war das Objekt Ihrer Meinung nach am Schnellsten? (A/B/C) 
14) Beurteilen Sie die Distanz von A zu B im Vergleich zu B zu C. Ist die Distanz 

gleich gross? (Ja, etwa gleich gross/Nein, von A zu B ist lŠnger/ Nein, von A zu 
B ist kŸrzer) 

15) Wann ist das Objekt Ihrer Meinung nach langsamer geworden? (A/B/C) 
16) An welchem Ort hat das Objekt in Ihren Augen etwas Unerwartetes gemacht? 

(A/B/C) 
17) Hat das Objekt Ihrer Meinung nach lŠnger von A zu B oder von C zu D 

gebraucht? (Von A zu B dauert lŠnger/Von A zu B dauert weniger lang/Es 
dauert etwa gleich lang) 

18) An welchem Punkt war das Objekt Ihrer Meinung nach am Schnellsten? 
(A/B/C) 

19) Wieviel lŠnger hat das Objekt in Ihren Augen von A zu B im Vergleich von C zu 
D gebraucht? (gleich lang/doppelt so lang/halb so lang) 

20) Wo verbringt das Objekt die meiste Zeit? (A/B/C) 
21) Wann hat das Objekt in Ihren Augen beschleunigt? (A/B/C) 
22) Wieviel gršsser ist die Distanz von A zu B im Vergleich von C zu D? (gleich 

gross/doppelt so gross/halb so gross) 
23) Arbeiten Sie regelmŠssig mit Bewegungsdaten? (Ja/Nein) 
24) Wenn Ja, mit was fŸr Daten arbeiten Sie? (open text box) 
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25) Sind Sie mit Software zur Analyse von Bewegungsdaten vertraut, z. B. Esri 
Tracking Analyst? 

26) Wenn Ja, welche Software benutzen Sie? 
27) Wie oft benutzen Sie Software zur Analyse von Bewegungsdaten? (immer/sehr 

oft/oft/gelegentlich/selten/sehr selten/nie) 
28) Ihr Geschlecht: (Mann/Frau) 
29) Ihr Alter: (20-30/31-40/41-60/60+) 
30) Haben Sie noch kritische Anmerkungen oder Fragen? 

 

>$7+*37(.1%(1@,%&33(&-&3H#7#Y((

Wihout context condition:  

 
With legend: 
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With legend and title: 
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Without context information:  
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With legend information: 

  
 

With title and legend information 

  
 

All remaining stimuli can be found on the CD.  
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<?php //start php script  
$random = rand(1, 3);  
$uid = time();  

 
$countFile = "countfile_questionnaire_AK.txt";  
$countHandle = fopen($countFile, 'a');  
$data = $random." \ n";  
fwrite($countHandle, $data);  
fclose($countHandle);  

 
$logFile = "logfile_questionnaire_AK.txt";  
$logHandle = fopen($logFile, 'w');  
fwrite($logHandle, $uid);  
fclose($logHandle);  

 
if ($random == 1){  
echo "<p><a 

href='http://www.onlineumfragen.com/login.cfm?umfrage=12212'>Starte das Experiment 
(Gruppe ".$random.", www.onlineumfragen.com/login.cfm?umfrage=12212)...</a>";  

} 
elseif ($random == 2){  
echo "<p><a 

href='http://www.onlineumfragen.com/login.cfm?umfrage=12209'>Starte das Experiment 
(Gruppe ".$random.", www.onlineumfragen.com/login.cfm?umfrage=12209)...</a>";  

} 
else { //$random == 3  
echo "<p><a 

href='http://www.onlineumfragen.com/login.cfm?umfrage=12172'>Starte das Experiment 
(Gruppe ".$random.", www.onlineumfragen.com/login.cfm?umfrage=12172)...</a>";  

} 
// end of php script  
?> 
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(all had equal size in Experiment) 
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The copyright belongs to Ramya Venkateswaran, from the GIS unit of the Department 

of Geography, who programmed the functions.js code as well as an initial track.php 

function.  

 

// The copyright of this code belongs to: Ramya Venkateswaran, GIS Unit, Department of 
Geography, University of Zurich  
/*  
Index number;Time stamp;Lat;Long;Circle size  
 
1;10/5/2010 18:30:45;;Circle 1  
*/  
var  xmlDoc;  
var  URL;  
var  latLng= new Array();  
var  markers = new Array();  
var  map;  
var  text;  
var  count = 1; 
var  kml;  
 
function  randomUrl(url) {  
 var  date = new Date();  
 return  url + "?"  + date.valueOf();  
} 
 
 
function  initialize(fileName) {  
 if  (GBrowserIsCompatible()) {  
 map = new GMap2(document.getElementById( "map_canvas" ));   
 map.setMapType(G_PHYSICAL_MAP);  
     // add controls  
 GEvent.addListener(map, "click" , click);  
 map.disableDragging();   
 loadXML(fileName + ".xml" );   
 //Create all the overlays here  
 geoXmlTent = new GGeoXml(  
  randomUrl( "http://www.geo.uzh.ch/~annakl/EventExperiment/Context_Tent_"  + 
fileName + ".kmz" ));  
    //For every overlay you create you have to add it using addOverlay  
          map.addOverlay(geoXmlTent);  
 
} 
} 
 
function  click(latlng, overlaylatlng, overlay){  
  
 var  shape;  
 var  radius;  
 if  (document.getElementById( "circle2" ).checked)  
 { 
  radius = 0.08 ; 
  shape= "circle" ; 
 } 
 
 if  (overlay != null ) 
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 { 
  if (shape == "circle" ){  
   drawCircle(overlay,radius);  
   writeToTextBox(overlay, radius);  
  } 
 
 } 
 
} 
 
function  writeToTextBox(overlay, radius){  
 
 if  (count == 1) 
 { 
  text = "" ; 
 } 
 var  shape = "" ; 
 
 if (document.getElementById( "circle2" ).checked == true ) 
 { 
  shape = "circle2" ; 
 } 
 
 
 text  = count.toString() + ";"  + overlay + ";"  + radius +  ";"  + shape + "\r\ n" ; 
 count++;  
 //alert(text);  
 document.getElementById( "mapData" ). value = document.getElementById( "mapData" ). 
value + text;  
} 
 
function  drawCircle(center,radius){  
 var  circlePoints = Array();  
 var  searchPoints = Array();  
 var  pointInterval = 30; 
 
 
 with  (Math) {  
  var  rLat = (radius/ 3963.189 ) * ( 180 /PI); // miles  
  var  rLng = rLat/cos(center.lat() * (PI/ 180 ));  
 
  for  ( var  a = 0 ; a < 361  ; a++ ) {  
   var  aRad = a*(PI/ 180 );  
   var  x = center.lng() + (rLng * cos(aRad));  
   var  y = center.lat() + (rLat * sin(aRad));  
   var  point = new GLatLng(parseFloat(y),parseFloat(x), true );  
   circlePoints.push(point);  
   if  (a % pointInterval == 0) {  
    searchPoints.push(point);  
   } 
  } 
 } 
 
 searchPolygon = new GPolygon(circlePoints, '#0000ff' , 1, 1, '#0000ff' , 0.2 );   
 map.addOverlay(searchPolygon);   
} 
 
function  drawRectangle(center,diagonal){  
  
   var  breadth = diagonal* 2; 
   var  length = diagonal;  
 
 var  polygon = new GPolygon([  
    new GLatLng(center.lat() -  (length/ 2) , center.lng() -  (breadth/ 2)),  
    new GLatLng(center.lat() + (length/ 2) , center.lng() -  (breadth/ 2)),  
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    new GLatLng(center.lat() + (length/ 2) , center.lng() + (breadth/ 2)),  
    new GLatLng(center.lat() -  (length/ 2) , center.lng() + (breadth/ 2)),  
    new GLatLng(center.lat() -  (length/ 2) , center.lng() -  (breadth/ 2)),  
  ],  '#0000ff' , 1, 1, '#0000ff' , 0.2 );   
 
 / /searchPolygon = new GPolygon(circlePoints, '#0000ff', 1, 1, '#0000ff', 0.2);   
 map.addOverlay(polygon);   
} 
 
 
function  loadXML(file){  
    if  (window.ActiveXObject){  
        xmlDoc = new ActiveXObject( "Microsoft.XMLDOM" );  
        xmlDoc.async= "false" ; 
        xmlDoc.load(file);  
        if (xmlDoc.parseError.errorCode != 0) 
            displayParseError_IE();  
       else  
            processDocumentIE();  
    }  
    else  
    {         
 
  var  xmlhttp = new window.XMLHttpRequest();  
  xmlhttp.open( "GET" ,file, false );  
  xmlhttp.send( null );  
  xmlDoc = xmlhttp.responseXML.documentElement;  
  //alert(xmlhttp.responseXML);  
  processDocument();  
 
    }     
} 
 
function  displayParseError_IE()  
{ 
 if  (xmlDoc.parseError.errorCode != 0) 
 { 
  var  popupHandle = window.open( "" , "" , "height = 300, width = 400" );  
  popupHandle.document.write( "<h2> XML Parsing Error! </h2><br>" );  
  popupHandle.document.write( "Error#:"  + xmlDoc.parseError.errorCode);  
  popupHandle.document.write( '<br>' );  
  popupHandle.document.write( 'Description:'  + xmlDoc.parseError.reason);  
  popupHandle.document.write( '<br>' );  
  popupHandle.document.write( 'In file#:'  + xmlDoc.parseError.url);    
  popupHandle.document.write( '<br>' );  
  popupHandle.document.write( 'Line#:'  + xmlDoc.parseError.line);  
  popupHandle.document.write( '<br>' );  
  popupHandle.document.write( 'Character # in Line:'  + 
xmlDoc.parseError.linepos);  
  popupHandle.document.write( '<br>' );  
  popupHandle.document.write( 'Character # in File:'  + 
xmlDoc.parseError.filepos);  
  popupHandle.document.write( '<br>' );  
  popupHandle.document.write( 'Source Line:'  + xmlDoc.parseError.srcText);  
  popupHandle.document.write( '<br>' );  
 } 
} 
 
function  processDocument()  
{ 
    var  bounds = new GLatLngBounds();  
 var  tracks = xmlDoc.getElementsByTagName( "track" );  
 
 map.setCenter(bounds.getCenter(), 3);  
    //alert(tracks.length);  
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 // Create our "tiny" marker icon  
 var  blueIcon = new GIcon();  
 blueIcon.image = "../images/Untitled - 2.gif" ; 
 blueIcon.shadow = "" ; 
 blueIcon.iconSize = new GSize( 2, 2);  
 blueIcon.shadowSize = new GSize( 0, 0);  
 blueIcon.iconAnchor = new GPoint( 0, 0);  
 blueIcon.infoWindowAnchor = new GPoint( 0, 0);  
  
 var  i,j;  
 var  lat, lng;  
 var  mgr = new MarkerManager(map);  
  
 var  marker = new GMarker( new GLatLng( 0.0 , 0.0 ), {icon: blueIcon});  
 var  markerArray = [];  
 markerArray.push(marker);  
 mgr.addMarkers(markerArray, 3);  
 mgr.refresh();  
 
 for  (i= 0;i<tracks.length;i++)  
 { 
  var  children = tracks[i].childNodes;  
  var  traversed = false ; 
 
  for  (j= 0;j<children.length;j++)  
  {     
   if  (children[j].nodeName == "latitude" ) 
   { 
    //alert(j);  
    lat = children[j].firstChild.nodeValue;  
   } 
   if  (children[j].nodeName == "longitude" ) 
   { 
    //alert(j);  
    lng = children[j].firstChild.nodeValue  
   } 
   if  ((lat != null ) && (lng != nul l ) && traversed== false ) 
   { 
    latLng.push( new GLatLng(parseFloat(lat), parseFloat(lng)));     
    bounds.extend(latLng[i]);  
    traversed = true ; 
    //map.addOverlay(new GMarker(latLng[i]), markerOptions);  
    var  marker = new GMarker(latLng[i], {icon:blueIcon});  
    markers.push(marker);  
     
   } 
  } 
 } 
 mgr.addMarkers(markers, 3);  
 mgr.refresh();  
 map.setCenter(bounds.getCenter(), 13);  
  
}  

 

The first step is the initialization of the google maps. Next, the *.xml file that contains 

trajectory information is initialized by loading the *.xml from the track.php file by calling 

the loadXML function. LoadXML() is responsible for any input/output (I/O) 

ooperations performed on the xml file.. The initialize function also calls the 

processDocument() function. This function handles the plotting of the trajectory from 
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the XML file onto the google map using a couple of Google Maps API. Additionally a 

listener is initialized that is triggered when the user clicks on the map area. In this case it 

also checks if the radio button is activated in the track.php file. If a radio button is 

activated the click() function calls the drawCircles() and writeToTextBox() functions. The 

drawCircles() function takes the size of the circle and places it at the center of the mouse 

tip. It also makes sure that a circle can only been drawn if the mouse is on the trajectory. 

No circles can be drawn if the mouse is clicked outside the trajectory. The function also 

displays the circle on the map, which is important, as participants are able to draw more 

than one circle. The writeToTextBox() function is an internal function that saves the 

parameters that were used. It also connects to the track.php file and writes all the circles 

that were drawn, including timestamp, longlitude, latidue into a file.  
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