Header

UZH-Logo

Maintenance Infos

Structural features specific to plant metallothioneins


Freisinger, Eva (2011). Structural features specific to plant metallothioneins. Journal of Biological Inorganic Chemistry, 16(7):1035-1045.

Abstract

The metallothionein (MT) superfamily combines a large variety of small cysteine-rich proteins from nearly all phyla of life that have the ability to coordinate various transition metal ions, including Zn(II), Cd(II), and Cu(I). The members of the plant MT family are characterized by great sequence diversity, requiring further subdivision into four subfamilies. Very peculiar and not well understood is the presence of rather long cysteine-free amino acid linkers between the cysteine-rich regions. In light of the distinct differences in sequence to MTs from other families, it seems obvious to assume that these differences will also be manifested on the structural level. This was already impressively demonstrated with the elucidation of the three-dimensional structure of the wheat E(c)-1 MT, which revealed two metal cluster arrangements previously unprecedented for any MT. However, as this structure is so far the only one available for the plant MT family, other sources of information are in high demand. In this review the focus is thus set on any structural features known, deduced, or assumed for the plant MT proteins. This includes the determination of secondary structural elements by circular dichroism, IR, and Raman spectroscopy, the analysis of the influence of the long linker regions, and the evaluation of the spatial arrangement of the sequence separated cysteine-rich regions with the aid of, e.g., limited proteolytic digestion. In addition, special attention is paid to the contents of divalent metal ions as the metal ion to cysteine ratios are important for predicting and understanding possible metal-thiolate cluster structures.

Abstract

The metallothionein (MT) superfamily combines a large variety of small cysteine-rich proteins from nearly all phyla of life that have the ability to coordinate various transition metal ions, including Zn(II), Cd(II), and Cu(I). The members of the plant MT family are characterized by great sequence diversity, requiring further subdivision into four subfamilies. Very peculiar and not well understood is the presence of rather long cysteine-free amino acid linkers between the cysteine-rich regions. In light of the distinct differences in sequence to MTs from other families, it seems obvious to assume that these differences will also be manifested on the structural level. This was already impressively demonstrated with the elucidation of the three-dimensional structure of the wheat E(c)-1 MT, which revealed two metal cluster arrangements previously unprecedented for any MT. However, as this structure is so far the only one available for the plant MT family, other sources of information are in high demand. In this review the focus is thus set on any structural features known, deduced, or assumed for the plant MT proteins. This includes the determination of secondary structural elements by circular dichroism, IR, and Raman spectroscopy, the analysis of the influence of the long linker regions, and the evaluation of the spatial arrangement of the sequence separated cysteine-rich regions with the aid of, e.g., limited proteolytic digestion. In addition, special attention is paid to the contents of divalent metal ions as the metal ion to cysteine ratios are important for predicting and understanding possible metal-thiolate cluster structures.

Statistics

Citations

Dimensions.ai Metrics
93 citations in Web of Science®
97 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

401 downloads since deposited on 12 Mar 2012
33 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Scopus Subject Areas:Life Sciences > Biochemistry
Physical Sciences > Inorganic Chemistry
Language:English
Date:2011
Deposited On:12 Mar 2012 17:45
Last Modified:23 Jan 2022 21:25
Publisher:Springer
ISSN:0949-8257
Additional Information:The original publication is available at www.springerlink.com
OA Status:Green
Publisher DOI:https://doi.org/10.1007/s00775-011-0801-z
PubMed ID:21688177
  • Content: Accepted Version
  • Content: Published Version
  • Language: English
  • Description: Nationallizenz 142-005