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1 Introduction

Extensions of the SM often include one or more additional abelian gauge symmetries beside
the Standard Model U(1)y hypercharge. Compelling motivation for these extensions arises
from grand unified theories (GUT) and from string theory. The phenomenology of new
abelian gauge groups has been widely studied in the literature [1-11].

Moreover, in the recent years there was a renewed interest in this kind of models, based
on the key observation [12, 13] that an extra U(1)p GeV gauge boson would be able to
naturally explain the anomalies observed in indirect dark matter detection experiments, like
the reported PAMELA result on the positron fraction [14]. The extra gauge symmetry may
be hidden from the SM particles, which are singlets under the new force: they constitute
the visible sector. The particles charged under the new U(1)p and singlets under the SM
gauge groups are often referred to as the dark (or hidden, or secluded) sector.

The connection between the dark and wvisible sectors is established through mixing op-
erators. One candidate term is kinetic mixing of U(1)y with U(1)p [15]. Since cosmological
considerations (like Big Bang Nucleosynthesis) severely constrain a massless gauge boson,
the extra U(1) symmetry has to be broken. Its breakdown can be achieved through the
introduction of a new Higgs boson, hp, which can naturally mix with the SM Higgs [16-20],
thus providing an extra portal between the two worlds. These extensions of the SM have
also been studied in the context of electroweak phase transition (EWPT) [21-23] and dark
matter (DM) since the dark sector provides natural DM candidates [24-44].

While the extra U(1) models are very constrained from current experimental data [45—
49], the non-observation of a Higgs boson yields very mild bounds on the Higgs portal
parameters at present. In this paper we explore the constraints and detectability prospects



of the Higgs sector at colliders. Very recent work [50] was focused in the potential signatures
at the LHC for large luminosities (O(30) b}, see also refs. [51-58] for older studies). Our
interest resides in the reach of the early LHC data (v/s = 7TeV, with a total integrated
luminosity less or equal than 15fb~!). Similar work was already done in the context of the
MSSM in ref. [59].

Due to the mixing with hypercharge, the dark gauge boson can be in conflict with
electroweak precision data, such as the Z mass or the effective weak mixing angle. Thus
the most natural options, already considered in the literature, is to have either a very
heavy (TeV scale) Z’ [60-62] or very light (GeV) boson [63-65]. The latter scenario is
well-motivated when looking to find a unified explanation of recent results of DM, as
suggested in ref. [12]. In this work we take an agnostic attitude and consider the Z’ mass
a free parameter.

This paper is organized as follows: in section 2 we review the model under considera-
tion. In section 3 we explain in detail the scan of the parameter space, all the constraints
under consideration and the LHC expected reach for different scenarios. Section 4 contains
the numerical results of our analysis. Finally, we conclude in section 5.

2 Model review

Generic dark sector models were discussed in detail in the literature (e.g. [18]). In this
section we briefly review the model used in our study. The Lagrangian can be written
as follows,

L=Lsy + Lpark + Loiz » (2.1)

where we have split the contribution into the SM-piece, the dark sector and the mixing
between the two sectors. For the dark sector, we would like to add the minimum field
content. Thus, we include a new dark gauge boson X and a dark Higgs field Hp. The dark
sector might contain fermions, which are SM singlets and charged under U(1)p. These
fermions are, however, irrelevant in the present context. The dark Higgs field will give
mass to the X boson after spontaneous breakdown of the gauge symmetry. We pick a U(1)
gauge group for simplicity; that is not to say that the dark sector has to be that simple,
but that we choose to parametrize it in a simple way. It is clear that many other, richer
possibilities (from a phenomenological point of view) can also be considered.! Under these
assumptions, the dark Lagrangian reads

1

Lpark = (D Hp) (D Hp) + ppHLHp — Ap(HpH})? — 1

XXM 4 ... (2.2)
where D,, = 0, +ig'Y B, + igT "Wy +igpQpX,, is the covariant derivative, gp the dark
U(1)p gauge coupling, X, its gauge strength tensor and @ p is the charge under the dark
force. The last term is the kinetic term for the dark gauge field, while the remaining terms

'One could argue that the details of the dark sector at energies above LEP and SLC could be absorbed
into the low energy GeV scale parameters by integrating out the heavy sector. Another option is to work
with a different dark gauge group. We will stick, for the sake of simplicity, to this minimum extra added
field content.



correspond to the kinetic term for the complex scalar Higgs and the dark Higgs potential.
The ellipsis stands for other terms not relevant for our study. The mized Lagrangian will
depend upon how X and Hp couple to the SM. In our setup, it is natural to consider
kinetic mixing between X, and B, and a mixing term in the Higgs potential [16, 17], since
these two are the only renormalizable operators relating X and Hp to the SM.? With these

assumptions we have
€A y
Emix = ?B,LLI/XM +6H(HHT)(HDHTD)7 (23)

where B, is the U(1)y hypercharge field strength tensor and H is the SM Higgs doublet.
It is well known that €4 has to be small in order to be compatible with current experimental
limits (see [48] and references therein). The constraints on ey are less stringent, given our
current knowledge of the Higgs sector.

For the sake of completeness, we write down the SM Lagrangian,

Lsy = (D,H)(D,H) +pHH' — \(HHT)?
+zf:yf(fLHfR + h.c) — i(

where y is the Yukawa coupling for the SM fermion f and the ellipsis indicates the presence

B, B" + WIWE) + ..., (2.4)

of other terms not relevant for our study.

2.1 Gauge sector

In order to derive the interactions in the mass eigenstate basis, we have to proceed in
several steps. First, one has to diagonalize the kinetic terms for the gauge bosons. This
can be achieved by performing a field redefinition of B,, and X,. After this, one finds
that the covariant derivative has changed in such a way that now the dark sector interacts
directly with the B,. Since we want the U(1)p gauge group to be broken, the vacuum
expectation value of Hp will contribute to the masses of the Z and the Z’, while the
photon will remain massless.
The Lagrangian involving both U(1) strength tensors is given by

1
L= 4 (BMVBW + X XM — QGABWXMV)' (2.5)

In order to diagonalize the kinetic term, we perform the following redefinition of the

fields [11] first:

1
B, — B, +—2_X,, X, —

1—6?4 1/1—6?4

Then the covariant derivative reads®

Xy - (2.6)

, €AY

Qp +g X,
1/1—6?4 1/1—62A

2 As noted in ref. [56], there are other such operators if the dark fermions are also taken into account.
3In our convention, the SM Higgs doublet has a Y=+1/2, and the dark Higgs doublet also has Qp =
+1/2.

Dy =0, +ig'Y B, +igT*W} +i | gp (2.7)




and the mass matrix of the neutral gauge bosons becomes

S%/V —CWSW QS%V
2 2
my, < —Ccwsw Gy —acw sw > , (2.8)
as%v —acw Sw CLQS%/V + A

where sy, cy are the sine and cosine of the usual SM electroweak mixing angle and

2 2 2
2 v 2 2 vp A= mx, €A (2.9)

2 12
mz, = (9" +97), Mxo =901 _ 2y* = ) Q4= —F
0 4 0 4(1—€%) my, /1_ &,

One of the mass eigenvalues is zero, corresponding to the photon eigenstate, and the two
others are given by

2
2

02 = "2 (14 a4 A) £ [(1 4 sha? + AP —4A]. (2.10)

Due to the smallness of €4 it is well justified to take the gauge boson masses at their
tree level values, namely, to assume mz = mz, and mz = mx,. We have numerically
checked that this approximation has an error below 0.02 %. The relation between mass
and interaction eigenstates is given by

B, CW —SWCy SWSy A,
(Wi’) = (sw Cw ey —cwsx) (Z#) ; (2.11)
X, 0 sy Cy z,

and the new gauge boson mixing angle by

—2swa

—_— 2.12
1—3%,[,@2—A ( )

tan 2y =

2.2 Higgs sector

In the unitary gauge, one has

1 0 1
H:<v+h> , HDZE('I}D—I—]”LD), (213)

and the minimization of the Higgs potential yields

2 v?
MD:)\DUD—EH?. (2.14)

2
YD

= ?—egL2
fo=AVT = e,

The squared mass matrix of the Higgs sector reads

2 _
M2 — ( 2 v GHUUD) 7 (2.15)

—€gUVUD 2)\DU%

with its eigenvalues given by

mdy = X® + Apvd F /(M2 — Apvd)? + el (2.16)



Z7Z AVA z7'

ho| (—cy +asysw)? | (sy +acysw)? | (—cy + asysw)(sy + acysw)

2 2
hq sy cy SxCx

Table 1. gz, z, couplings.

where mo > mi. The mass eigenstates read
ho = coh — sahp hi1 = sqh +cohp, (2.17)
and the mixing angle is given by

EHFUDV )\v2 - )\DU%)

820 = C2a =
\/()\v2 — Apv3)? + 20202 \/()\112 — Apv3)? + 0203

(2.18)

)

We define the effective Higgs coupling as the coupling in our model normalized to the SM
case. Using eq. (2.17) in egs. (2.4) and (2.2), one has

Gy WW = Gp, {7 = Sa s GhaWW = Gpy fF = Ca - (2.19)

The couplings to Z — Z' read
v v
ghQZ1Z2 - CathlZg - saghDZ1Z2AE ’ gh121Z2 — 3a9h2122 + CaghD21Z2AE ) (220)

where Z1 9 = Z,7Z’, the guz, z, factors are given in table 1. Due to the smallness of the
kinetic mixing one finds that gnzz ~ gn,z/z' ~ 1, while all the other are at least suppressed
by a power of e4 < 0.03. Therefore, one has that the coupling of h; (hs) to the SM particles
is suppressed by a factor of ¢, (sq) with respect to the values of the SM Higgs.

There are also interactions involving three and four Higgs fields, as well as two gauge
bosons plus two Higgs fields. These decay modes constitute what we will call, from now
on, non-standard (Non-SM) Higgs decay modes, namely, those that do not appear when
considering the SM Higgs boson. They could be important, for instance, if there is a
significant fraction in the hy — hih; or hy — Z'Z' at LEP, like in the buried Higgs
scenario [66]. In our setup we assumed that the decay width of the Z’ into Standard Model
particles is negligible, since its couplings to Standard Model particles are suppressed by a
factor of €4 with respect to the couplings of the Z. The decay width of a Higgs boson into
two gauge bosons Z; and Zs is given by

2,3 2 4 2 1/2
I MY I 7, 2,5 my, (x1 + x2) T — X2
P = 212) = 647Tm21 2 m%, m? [1 - 2 * 4 %
W 7,M7,

) 2?2 + 13 1+ T2
14+ - — 2.21
X [ tgniTe+ — ¢ 5 , (2.21)

where H = hy, ho, 212 = (2mz,,/mu)?, gz, z, can be read from table 1 and S is a
symmetry factor, 1/2if Z; = Zs, 1 otherwise. The partial widths of the heavy Higgs boson



my [GeV] | mg [GeV] a | my [GeV] | gp €A
[1;400] [1;600] | [0;7] | [0;1000] | [0;1] | [0;0.3]

Table 2. Ranges of the parameter scan.

into light ones is

1 47”}2“ 2
P(hQ — hlhl) = 327rmh 1-— m2 ‘gh2h1h1’ ) (2‘22)
2 h2

where the trilinear Higgs coupling gp,n,n, is given by

€
Ghohihy = 2{3saca ()\vsa — )\Dvpca) — ZH [Uca(302a — 1) 4+ vpsa(3caa + 1)] } . (2.23)

Due to the rescaling of the Higgs-to-Standard Model couplings the Higgs production cross
sections are suppressed by a factor of s2 for hy (¢ for hy). Consequently, in the case
where one can neglect the non-SM decays, there is always one Higgs boson whose rate is
suppressed at most by a factor of 1/2. The branching fractions into SM particles will be
suppressed by a factor of 1 — Br(h; — non-SM). Therefore, the total rate for any Higgs
boson into SM particles is always lower than in the SM by a factor of

g%iww (1 — Br(h; — non-SM)) . (2.24)

3 Numerical analysis: parameter scans and constraints

3.1 Parameter scans and pre-LHC constraints

To explore the parameter space of the model a random parameter scan was performed
using the CuBA-library [67]. We chose as input parameters the physical parameters my,
msa, the mixing angle «, gp, mz and the kinetic mixing parameter €4 with values in the
ranges according to table 2. We focused on Higgs masses below 600 GeV since the LHC
experiments have published exclusions in that mass range and the phenomenology of a
heavy singlet Higgs has been studied elsewhere (see, for instance, ref. [53]).

The potential parameters were computed using

1

A= 102 [m%(l —c20) + m%(l +c24)], (3.1)
1
Ap = o [mi(L+ eza) +m3(1 = e2a)] (3.2)
D
1
€ = Sovn (m3 —m?) 594 . (3.3)

We also required the points to respect the positivity conditions, eq. (2.14), thereby ensuring
the proper minimalization of the potential. Motivated by the discussion of the electroweak
phase transition in similar models (see, for example, [68] and references therein), we
discarded points with nonperturbative potential parameters by requiring ez < 0.5 and
A, Ap < 1. This also limits the contribution of the invisible decay modes to the total width



of the Higgs bosons such that their values stay within the validity of the narrow width
approximation (i.e. I'{°"/m; < .05), which is required in order to interpret the exclusion
limits set by collider data on the rates of the Higgs boson as the product of the production
cross-section times branching ratio in a particular channel.

Constraints from direct searches were applied using HiggsBounds 2.1.1 [69, 70], where
points are excluded at the 95% confidence level. In the low-mass region (below 114.4 GeV)
the main exclusion channels are the LEP searches for a Standard Model-like Higgs [71-73]
and a Higgs-like scalar decaying completely invisibly [74-76]. In some cases the decay
ho — hih1 — 4b or 47 was also constrained directly by the corresponding LEP MSSM
searches [71]. In the high-mass region (120-200 GeV) the Tevatron searches were also used
to bound the parameter space [77, 78].

Electroweak precision data also limit the parameter space of our model in a significant
way [79, 80]. In order to assess the effect of a complete parameter fit, we used model
independent bounds on the kinetic Z — Z’ - mixing [48] to constrain e4 and computed
the contribution of the extended gauge and Higgs sectors to the Peskin-Takeuchi S and T’
parameters [81] using FormCalc [82]. For the two Higgs bosons h; and hg, it is given by

S = 25M(my) 4+ s2.5M(my), (3.4)

where S5M denotes the contribution of a Standard Model Higgs with respect to the reference
mass my = 120 GeV (and analogously for the T-parameter). The tree-level contribution of
the Z’ to the oblique parameters is [85]

2
cy — A 5

Gy — A 2 A
(A— 1)2€Aa

—Swmfia (3.5)

apwS = 4cky sy and apwT =

which diverge as mz — myz. We are however confident that the formulae are valid as

long as [F¥~3| < 1. Due to the constraints on €4 that we implemented this condition is
always fulfilled in our scan. Since we study the Higgs sector of this theory at the LHC,
we were interested in how a Z’' with suitably chosen properties can relax the upper mass
limit on the Standard Model Higgs mass from the S and T parameter fit, which is the
case when the tree level contributions are enhanced through mz — mz. We neglect loop
contributions of the Z’ via the ordinary photon and W,Z gauge boson self energies, since
their size would be of order of the Standard Model gauge sector contributions to the neutral
current amplitude, but suppressed by an additional factor of 6124. In the threshold region
around myz = my it is suppressed even further by the strong constraints on €4. We also
neglected dark fermions, since their contribution would only enter the forementioned at
the two-loop level. We set U = 0 and required a parameter space point to lie inside the 20
contour in the S — T-plane provided by the Gfitter collaboration [83, 84].

3.2 LHC data and projections

In our analysis we include the current LHC data and future projections for the search
channels listed in table 3. All of the searches use the most up-to-date LHC data with
a total integrated luminosity between 1.04 - 2.28fb~! (depending on the search channel),



Channel A;E?S (fb_lei/IS What we do Mfzs;er\i;lge Ref.
w—H—=WW | 17 15 Comb. 115-600 | [86-88]
pp—H— 27 |1.04-228 1.1-1.7 Comb. 120-600 [89-95]
pp — H — vy 1.08 1.7 Comb. 110-150 [96, 97]
p— H =7t | 1.06 1.6 Comb. 100-150 | [98, 99]

VH,H — bb - 1.1 CMS x 2 110-135 [100]

qqH, H — 77~ 1 ~ | ATLAS x 2| 110-130 | [101]

Table 3. List of LHC channels used in this study. Here, H stands for either h; or hy. The production
mechanisms considered in pp are gluon-fusion, vector boson fusion, associated production with
Z,W,tt and also bb — H. The cross sections at the LHC have been taken from ref. [102]. See the
main text for details.

except for the q¢H, H — 777~ channel, for which we use the MonteCarlo 2010 sample [101],
which provides a projection of the expected sensitivity of the current data-sample, since
no LHC collaboration has presented yet updated data in this search channel. In the case
of the associated production with a vector boson, with the Higgs decaying into bottom
pairs, the current analysis was done using a cut based procedure that is able to exclude a
Higgs boson with a rate of around 20 times the SM case [103]. The MC 2010 analysis was
performed by taking advantage of boosted bb pairs [104], and the expected exclusion with
1fb~! of data for this case is around 6 times the SM [101]. We note that these channels
are not able to probe points in our model, but, for the sake of completeness, we include
them in our analysis.

We combine the results from ATLAS and CMS in the channels where both
collaborations have presented data, following the prescription detailed in refs. [105, 106]
(see below). The current exclusion is obtained by using the observed limits reported by
ATLAS and CMS. For channels where only one of the collaborations has presented data,
we will base our current exclusion on that analysis. In the same case, we compute the
future projections by doubling the expected result in an attempt to mimic the combination
of both experiments and scaling the result by the expected total integrated luminosity
using the prescription detailed below. Since the reach for SM-like Higgs bosons at CMS
and ATLAS is similar, this approximation is expected to be reasonably accurate. Except
in the ZZ channel, all of the others involve, for a particular mass range, one definite final
state. For the ZZ we also combine in quadrature the results for the a) four leptons, b)
two leptons two quarks and c) two leptons plus two neutrinos, and d) two leptons plus two
taus (CMS only) final state searches.

Here we briefly review the procedure used to combine the experimental information.
For each relevant channel we compute the following quantity:

Rmod

Q(EO) = Rexp(£0) 5

(3.6)
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Figure 1. LHC reach (a) and statistical significances (b) for the SM Higgs boson H with 15 fb™*,
combining both experiments. The color coding is as follows: WW (blue), ZZ (orange), vy (red),
77 (black) , VH, H — bb (green) and qgH, H — 77~ (purple).

where Ry,,q is the rate in this particular channel coming from our model, Rey, is the
exclusion limit at the 95% C.L., at a reference total integrated luminosity L£o. Eq. (3.6) is
exactly the same definition used by HiggsBounds in order to set the 20 exclusions: if @) > 1
the point is excluded at the 95% C.L.. We compute Ry, combining the results for each
LHC experiment in inverse quadrature (see refs. [105, 106]). In ref. [59] this procedure was
found to be more conservative than the combination performed by the ATLAS collaboration
by 10-20 %.* While the quantity Rpmoq is a number that does not change, Rexp scales with
the luminosity as £-/2. Thus, defining Rexp(Lo) = R and Qo = Rmod/Ro, one has that

QL) = Rggd \/g = QO\/E- (3.7)

In order to derive these equations, one is neglecting all systematic effects and also assumes
that in each particular channel B > S > 1 holds, where B (S) are the number of back-
ground (signal) events for a particular channel. With these simplifications the expected

statistical significance o turns out to be o =~ 2 Q).

As an illustration, we present in figure 1 the expected reach at the LHC and the
statistical significance for the SM Higgs as a function of the Higgs mass in the channels
described in table 3, assuming a total integrated luminosity of 15 fb~!, which corresponds to
the total integrated luminosity that can be collected by the end of 2012 if the instantaneous
luminosity is kept at the current rate.

4While the first version of this manuscript was under consideration, ATLAS and CMS presented the
combination of their datasets in [107]. We have compared their results against our naive combinations,
finding that the expected values differ by at most 10%, while for the observed values the discrepancy ranges
from 30 to 50 %, but in those cases our naive combination turns out to be a conservative. A similar
comparison is also shown in figure2 of ref. [108], where the SM combination is confronted against the
experimental result, also finding a similar accuracy.
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Figure 2. Scanned points in the m; — mq plane. In the left panel (a) we show a representative
sample of excluded along with allowed points, while in the right panel (b) we show only allowed
points. In the left panel, we show the points excluded by LEP (blue), Tevatron (green), S- and T-
parameters (red, filled), e4 (red, empty) and perturbativity constraints (orange). The black points
are allowed by all current collider data. In the right panel the color coding varies according to the
value of ¢2: red (0 < ¢2 < 0.25), magenta (0.25 < c2 < 0.5), blue (0.5 < ¢2 < 0.75) and black
(0.75 < 2 <1).

As one can see, the W W channel is setting the most stringent exclusion in the 120 —
200 GeV range. For larger masses, the H — ZZ channel takes the leading role. For masses
below 120 GeV one enters into the problematic range, where the WW channel becomes
ineffective, and the diphoton requires O(10 fbfl) integrated luminosity in order to probe
the SM Higgs. Moreover, as mentioned in section 2.2, the suppression factor for one of
the Higgs bosons is at most 1/2, unless there is a significant non-standard branching ratio.
This means that in the case of maximal mixing without significant extra-SM decay modes,
at least one Higgs boson can be tested at the 2 (5) o level if its mass lies in the 125-550
(140-190) GeV range.

4 Numerical analysis: results

In this section we present the results of the parameter scan as defined in section 3. In
the left panel of figure 2 we study the impact of each experimental or theoretical bound
on the parameter space of the model in the m; — mg plane. We plot points that are
excluded by LEP (blue), Tevatron (green), S and T parameter (red, filled), e4 (red, empty)
and the requirement of perturbativity of the potential parameters (orange). It is clearly
visible how the direct searches of LEP (blue) and Tevatron (green) constrain the region
my < 114.4 GeV and m; ~ 160—170 GeV. The indirect bounds via the S and T" parameters
(red, filled) and the constraints on kinetic mixing of the neutral massive gauge bosons (red,
empty) mostly affect regions where one or both Higgs bosons are heavier than 155 GeV.

~10 -



As can be seen from equation (3.1), the perturbativity requirement A < 1 places an upper
bound m; < v/2v ~ 350 GeV on the mass of the lighter Higgs boson (orange). However,
points in that region tend to be excluded for other reasons before so that its most important
effect is to prevent the decay width of either Higgs boson into Z’Z’ from becoming large
enough to invalidate the narrow width approximation.

The black points evade all of the above constraints and are the focus of the study at
hand. This subset is shown in the right panel of figure 2, where we have colored the points
according to the rescaled squared coupling of he to Standard Model particles, namely,
to the particular value of ¢2: red (0 < ¢ < 0.25), magenta (0.25 < ¢2 < 0.5), blue
(0.5 < ¢ < 0.75) and black (0.75 < ¢ < 1).

We focus first on the region where the mass of the ligher Higgs state h; is below
the LEP limit of 114.4 GeV. Here, the h; coupling to Standard Model particles has to be
significantly suppressed to avoid direct detection.” The heavier state hy can be lighter than
114.4 GeV at the same time if ho — hi1hy — SM is by far the dominant decay channel, in
which case it can evade the constraints coming from the LEP searches for invisible decays
of a Higgs-like scalar.® The decay h; — ZZ' is subdominant (branching fraction below 1%)
in this region as well as in the whole parameter space.

When m; < 114 GeV < my < 155 GeV, the heavy Higgs state hy behaves largely
as the Standard Model Higgs, except for possible non-standard decays. In turn, if ms is
above 155 GeV, fine-tuning between the S and T parameter contributions of the extended
bosonic sectors is needed in order to evade the constraints from electroweak precision tests.
It is necessary that myz < myz, and for a given point in the mq-mo-plane the allowed range
for mz becomes smaller, the larger my is.

When m; is above 114 GeV, there are no direct constraints on the mixing angle. The
indirect constraints via the S and T parameter force the heavy Higgs to mostly decouple
from the Standard Model for masses ma = 150 GeV. Where the decay ho — hyhq is possible,
the corresponding branching fraction is always smaller than 0.5. BR(hy — Z'Z") can take
any value, whereas BR(hy — Z'Z') decreases with growing msy. The region where both
Higgs masses are larger than 155 GeV is, again, the result of mz < my.

Let us now study how the LHC experiments will probe the parameter space with their
main search channels for the Standard Model Higgs boson. Even though production rates
and decay widths are never enhanced in this model, the parameter space is already probed
efficiently. As it can be seen on the left panel of figure 3, the current dataset (1.04-2.28 fb=1),
shown in green, is able to exclude a vast majority of points in the region of m; > 140 GeV,
mostly due to the hy — WW/ZZ channels. If m; < 114 GeV, he — WW/ZZ is probing
values of my above 135GeV range. With 5 fb~! (red points) one can exclude almost

5The parameter space points where m; < 12GeV should be taken with care, since the LEP search in
the hiZ, hi — bb is cut-off at this value [71] and there are other low energy experiments that can probe
this mass range more efficiently than the searches included in this study (see also [109] for an analysis of
the LHC reach.) . The detailed analysis of this region is outside the scope of the present work.

5Recent studies based on jet-substructure techniques show that the ho — h1h1 — 45 final states can be
tested at the 50 level at the 14 TeV LHC with O(10 — 100 fb~! of data [110-112], depending on the model
under consideration, and on m; and ms2. Due to these reasons we decide not to include those analysis in
the present work.
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Figure 3. (a) LHC 20 exclusions for different scenarios and (b) most sensitive channels in the
mj —mg plane. In the left panel, we show the points that have been excluded by the LHC with the
current dataset (green), and also those that can be excluded after collecting 5 fb~" (red) and 15 fb~!
(blue) of data. The black points will still be allowed by LHC data. In the right panel we remove
the points excluded by the LHC today. Color coding varies according to the most sensitive channel
to that particular point and filled (empty) shapes correspond to he (h1). The pp — h; — WW
decay mode is shown in red, the diphoton channel in blue and the ZZ channel in green. The black
points are not sensitive to the LHC search channels under consideration.

the complete region m; > 130GeV except in the case that h; has small couplings to
SM particles and at the same time a large branching fraction into Z’Z’ or other invisible
particles. With 15 fb~! of data (expected in 2012) the diphoton channel will start to probe
points in the 110-130 GeV range (blue points in the left plot). The region where both
ho and hy are below the LEP limit (black points), and where the main decay mode for
ho is into hihi, can not be tested with the channels used in this study, since the LHC
collaborations have not presented dedicated searches for this kind of decays (one would
typically look into bbbb, 7H77bb or even 7H7 7T 77).

In figure 4 we show the 50 discovery potential of the model in the m; — mso plane
(left panel) and the rate suppression factor (2.24) for the most sensitive search channel as
a function of the Higgs mass which is more sensitive for exclusion/discovery at the LHC
(right panel).

From the left panel we see that a discovery with 15fb~! is only possible if either
mass is larger than about 130 GeV. We have explicitly checked that the case where LHC
discovers both Higgs states in the early run is only possible if the masses are in the range
130 < m1 S 170GeV and 130 < mo S 260 GeV and the mixing between the two states
is sizable.

When a Higgs scalar with a lowered rate ¢ - BR than the Standard Model expectation
is detected at the LHC it is a priori impossible to decide which of the two mass eigenstates
has been discovered using above searches. Furthermore, more involved studies are needed
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Figure 4. Left panel: 50 discovery potential with 5 fb~' (green), 15 fb™! (red), exclusion at
15 fb~! (blue) and parameter space points outside of early LHC reach (black). Filled (empty) shapes
correspond to the discovered or excluded particle being hy (hy). Right panel: Rate suppression
factor (2.24) at the LHC as a function of the mass of the Higgs more likely to be detected first.

to determine whether the origin of the rate suppression is the mixing between the states
or decays invisible to the specific search channel, e.g. h; — Z'Z’ or hy — hihy. From the
right panel we see that after collecting 15 fb~! of data, one can exclude a rate which is 0.6
(0.05) times the SM rate for mj ~ 130 (160) GeV; for my, > 200 GeV this value is 0.2. If a
Higgs in the mass range of 180 < mpiscovery S 300 GeV is discovered with a moderate rate
suppression factor o - BR/SM = 0.7, it is likely that the detected particle is the lighter
mass eigenstate hy. Furthermore, the early discovery of a Higgs state with a mass larger
than 155 GeV points toward m/, < mz. This is because it is likely that the first Higgs to
be discovered is the one that couples more strongly to the Standard Model. If it is heavier
than 155 GeV, a Z’ gauge boson with specific properties is needed to reconcile such a high
Higgs mass with electroweak precision data.

5 Conclusions

In this work we have studied in detail the constraints on dark Higgs models at the 7TeV
LHC. In the scenario under consideration the usual SM Higgs boson (i.e the one responsible
for electroweak symmetry breaking) mixes with a complex singlet that breaks an extra
U(1)p gauge symmetry, which in turn mixes with the SM hypercharge U(1)y. The free
parameters of this model are the masses of the two Higgs bosons m; and ms, the cosine
of the mixing angle ¢, between them, the mass of the additional gauge boson myz with
the kinetic mixing parameter €4 and the coupling strength gp. A parameter scan was
performed and the effect of theoretical and experimental bounds from direct searches at
LEP and Tevatron and electroweak precision data was studied.
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The current LHC published analyses (with luminosities between 1.04 and 2.28 fb™1)
are able to exclude masses above 140 GeV, unless there is a significant mixing between
the two mass eigenstates, while with 5 fb~! most of the points with the lightest Higgs
mass above 130 GeV are excluded. Furthermore, we have found that the 7 TeV LHC with
15 fb~! of total integrated luminosity will be able to probe most of the parameter space
at the 20 level. The points that evade these constraints correspond to two cases. The
first of them is when either Higgs boson lies in the 115 — 130 GeV range and there is some
non-negligible mixing between the two mass eigenstates. For such masses the WW final
state is not very useful, and if there is some mixing between h; and he one can loosen the
exclusion power of the vy channel, which will rule out that mass range for the SM Higgs
boson. However, we would like to point out that, according to projection on the SM Higgs
that include combinations of the different low-mass sensitive channels, this region can in
principle be accessed during the 7 TeV run.

The second case takes place when the Higgs rates are diminished due to a sizable
mixing between the mass eigenstastes, or if ho — hih; is kinematically open. For this
region of parameter space one should perform a dedicated search of hy — hihi by looking
at final states like bbbb, 7777 bb or even 77 7T,

We would like to remark that the effectiveness of these bounds gets looser if there
is an important partial width of any Higgs boson into other (not specified in this work)
dark sector degrees of freedom (like the dark matter candidate). As a consequence, our
results can either be interpreted as valid in a completion of the model where the afore-
mentioned channel is not relevant, or also as the largest exclusion coverage one can get in
parameter space.

We have also analyzed the possibility of discovering one or two Higgs bosons. We have
found that, with 15fb~! one can discover one of the Higgs bosons of this scenario if their
masses are larger than 130 GeV. If only one Higgs boson with a rate smaller than the SM
Higgs is discovered, it would be impossible to tell a priori whether it is h; or he. Discovering
both Higgs bosons will only happen if mg € [130,260] GeV and m; € [130,170] GeV. Such
an observation would rule out some other models, like for instance the MSSM, since the
lightest neutral Higgs boson can not have a mass well above 135 GeV. Finally, if the LHC
should not see any Higgs signature after collecting 15 fb~! of data then one can use that
result to constrain the mixing between the two Higgs bosons and/or the invisible width.
For the former case, a recent study using the H — ZZ — 4l lineshape was presented in
ref. [113].
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Note added: while this paper was in press, the LHC collaborations have shown updated
results using a larger dataset (about 5fb~! of data). Their results hint on a signal of a
Higgs boson with a mass of around 125 GeV with rates compatible with the SM. These
results leave our conclusions unchanged.
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