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Abstract 

Highly aligned arrays of ZnO/TiO2 core/shell nanorods were fabricated on glass substrates by 

hydrothermal growth of ZnO nanorods cores followed by the deposition of anatase TiO2 shells in a 

sol-gel process. The characterization of these composite materials with scanning electron 

microscopy (SEM), Raman spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray 

spectroscopy (EDX) and transmission emission microscopy (TEM) points to the formation of 

crystalline ZnO nanorod cores that are coated with anatase TiO2 shells. Humidity sensors based on 

these core/shell nanorod arrays exhibit outstanding sensitivities with capacitances varying from 

106 to 101 pF over a relative humidity (RH) range of 11% - 95% at room temperature, which is 1.5 

and 3 orders of magnitude higher than that of pristine TiO2 films and ZnO nanorods, respectively. 

Complex impedance analysis indicated that the enhanced humidity sensitivity is probably due to 

the high surface/volume ratio of this core/shell material in combination with the remarkable 

hydrophilicity of the TiO2 shell. 
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1. Introduction 

Recently, humidity sensors have attracted considerable research attention due to their key 

technical applications, such as in process control, meteorology, agriculture, and medical 

instrumentation [1-3]. Although many oxides, including SnO2 [4], ZrO2 [5], SiO2 [6], have been 

investigated for humidity sensor development, many novel materials and fabrication methods 

remain to be explored. Further research is requested to optimize the sensor characteristics, e.g. 

sensitivity, low hysteresis, excellent stability and short response/recovery times, so that these 

challenges are in the focus of current science. 

As both ZnO and TiO2 are exceptionally versatile semiconductor materials, they have been widely 

investigated with respect to their implementation in humidity sensors. Humidity sensors based on 

one-dimensional (1D) ZnO nanostructures excel through high chemical and physical stability, 

good sensitivity as well as fast response and recovery time due to their reduced overall dimensions 

in combination with high surface/volume ratios [7-8]. However, the low hydrophilicity of ZnO 

materials is an inherent drawback renders their further exploration for humidity sensors with high 

sensitivities quite difficult. TiO2 materials are more hydrophilic due to the dissociative adsorption 

of water at Ti3+ defect sites [9] so that their use in humidity sensors has been intensively studied. 

Nevertheless, the sensing performances of TiO2 generally suffer from its high resistance, 

pronounced hysteresis and insufficient long-time stability [10]. In addition, the majority of 

previous studies was focused on TiO2 thin films with rather low surface/volume ratios that limit 

the sensitivity in comparison with 1D nanostructures [11-12]. To solve this problem, porous thin 

films of TiO2 have been furthermore investigated as another approach. However, the enhanced 

sensitivity of porous films was achieved at the cost of manifold problems, e.g. insufficient 

response and recovery times, poor reproducibility and hysteresis effects [13]. Therefore, the 

combination of ZnO and TiO2 as complementary materials is a promising approach to enhance the 

humidity sensitivity with respect to the binary oxides. Moreover, the fabrication of core/shell 

heterostructures could lead to additional benefits from the “synergistic” interaction of chemical 

and physical properties in ZnO/TiO2 composites. This principle has been frequently reported for 

core/shell-based gas sensors that displayed enhanced response to ethanol [14], carbon monooxide 

[15] and sulfurated hydrogen [16], whereas only few investigations on humidity sensors based on 

core/shell nanomaterials have been published to date. 
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In this study, ZnO/TiO2 core/shell nanorod arrays (ZTNA)1 were fabricated through sol-gel 

processes to combine the advantages of both components into a single composite material. The 

obtained core/shell nanocomposites were fabricated as humidity sensor prototypes, and their 

sensing performance was characterized. Furthermore, sensing mechanisms were derived from 

analysis of the complex impedance plots. 

 

2. Experimental Section 

2.1 Preparative procedures 

2.1.1 Synthesis of ZnO seed layers 

1.0975 g (5 mmol) of Zn(Ac)2·2H2O and 0.3 ml of monoethanolamine were dissolved in 100 ml 

2-methoxyethanol and sonicated for 20 minutes to obtain a stable and homogeneous solution. The 

solution was then spin-coated onto a glass substrate followed by exposure to infrared radiation for 

2 min to remove the solvent. The whole process was repeated five times. The as-prepared 

substrates were sintered at 350oC for 30 minutes to yield dense and transparent ZnO seed layers.  

2.1.2 Growth of well aligned ZnO nanorod arrays 

ZnO nanorod arrays were hydrothermally grown in 150 ml of an aqueous solution of 20 mM zinc 

acetate (Zn(Ac)2·2H2O) and hexamethylenetetramine (HMTA; C6H12N4). The solution was then 

transferred into a sealed vessel where the substrates were suspended in the solution, with the side 

covered with the seed layer facing the bottom of the vessel. The vessel was covered with a piece 

of glass, heated and kept at 93oC for 6 h whilst the solution was refreshed every 2 h. Afterwards, 

the substrates were recovered, rinsed several times with deionized water and dried at 60oC for 10 

minutes.  

2.1.3 Coating of ZnO nanorods with TiO2 shells 

The coating with TiO2 shells was achieved through sol-gel methods. The sol was prepared as 

follows: 8.7 ml of tetrabutylorthotitante and 2.8 ml of diethanolamine were dissolved in 35 ml of 

ethanol. After magnetic stirring for 2 h, 0.45 ml of deionized water mixed with 4.5 ml of ethanol 

were added dropwise into the above solution under stirring. After another 2 hours of stirring, the 

sol was aged under light exclusion for 24 h. 

The procedure for the growth of TiO2 shells is analogous to the protocol used for the ZnO seed 
                                                             
1 ZTNA: ZnO/TiO2 core/shell nanorod array 
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layers except that substrates covered with ZnO nanorod arrays have to be immersed in the sol for 

1 min before spin-coating. Afterwards, as-obtained substrates were transferred into a tube furnace, 

sintered in air at 550oC for 1 h and then cooled down to room temperature naturally, thereby 

leading to the formation of ZTNAs. 

2.1.4 Assembly of humidity sensors 

ZTNA sensors were fabricated by in-situ growth of ZnO/TiO2 nanocomposites on glass surfaces 

coated with previously deposited Au/Ni interdigitated electrodes. Sensors based on ZnO nanorods 

and on TiO2 thin films were assembled in the same way as humidity sensing reference materials. 

Au/Ni interdigitated electrodes, with an effective area of 0.8×0.5 cm2 were deposited by thermal 

evaporation utilizing a shadow mask.. Bars and gaps of the individual electrodes were equidistant 

(200 μm).  

 

2.2 Characterization 

2.2.1 Materials characterization 

All samples were morphologically characterized by scanning electron microscopy (SEM) 

performed on a Zeiss SUPRA 50VP microscope with a voltage of 2 kV without further coating. 

All products were structurally characterized through X-ray diffraction (XRD) recorded on a 

Rigaku powder X-ray diffractometer using Cu Kα radiation (40 kV, 100 mA). The compositions of 

the composite materials were studied by energy dispersive X-ray spectroscopy (EDX) and the 

microstructures of the composite materials were investigated by transmission electron microscopy 

(TEM, TECANI F20). Raman spectroscopy was recorded on a confocal microscope (Dilor, France, 

LABRAM-1B) using the polarized line at 632.8 nm of a He: Ne laser at room temperature. 

Brunauer-Emmett-Teller (BET) surface area measurements were performed on an Autosorb 1 in 

N2-adsorption mode. Complex impedance measurements (Nyquist diagrams) were performed on a 

PAR 2273 electrochemical station (frequency range: 20 Hz - 1 MHz).   

2.2.2 Humidity sensor characterization 

The electrical characteristics of the sensors were tested as a function of relative humidity (RH) 

with a TH2617 LCR analyzer (Changzhou, China) with an applied AC voltage of 1 V and 1 kHz 

in a home-built testing chamber. The chamber was filled with saturated solutions of LiCl, MgCl2, 

Mg(NO3)2, KCl and KNO3, respectively, to calibrate the RH to 11%, 33%, 55%, 75%, 85% and 
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95% at room temperature. The sensors were suspended in the above sealed chamber without 

contacting the solution and they were stored in a dry environment after the test runs. A schematic 

illustration of the sensing tests is provided in Fig. 1. The sensor was equaled to a capacitance (Cp) 

in parallel with a resistance (Rp). The former (Cp) was the one recorded at different humidities. 

 

3. Results and discussion 

3.1 Structure and morphology of ZTNA 

Phase purity and crystal structure of the as-obtained sensor materials were evaluated with XRD 

analyses. Fig. 2a displays the XRD pattern of the pristine samples prior to the coating process. All 

diffraction peaks can be indexed to the hexagonal wurtzite structure of ZnO (JCPDS No. 36-1451; 

S.G. P63mc, a = 3.24982(9) Å, c = 5.2066(15) Å). The sharp and predominant peak observed at 

2θ=34.4o (002) indicates the high degree of crystallinity of the ZnO nanorods and points to their 

perpendicular growth on the substrate along [0001], i.e. along the c axis. However, after the 

coating process, additional peaks were observed (Fig. 2b) indicating the presence of other phases 

(represented by circles). The peak at 37.6o can be assigned to the (004) plane of anatase TiO2, 

whereas the weaker peaks of Zn1.7SiO4 and Zn2TiO4 indicate a reaction between the sample and 

the glass substrate and the interaction of ZnO core and TiO2 shell, respectively. The simultaneous 

presence of both ZnO and anatase TiO2 diffraction peaks after coating demonstrates the 

co-existence of both phases.  

Fig. 3a displays a typical SEM image of as-obtained ZnO seed layers, exhibiting uniform ZnO 

particles with a diameter of ca. 200 nm. SEM images of the hydrothermally grown ZnO nanorods 

and ZnO/TiO2 core/shell nanomaterials are shown in Fig. 3b and c, respectively. ZnO nanorods 

are grown perpendicular to the substrate with an average diameter of 200 nm, as expected from 

the size of the ZnO seeds (cf. Fig. 3a). The nanorod shape can be maintained after coating with the 

TiO2 shells, but the surface of the composite materials became rougher and the mean diameter 

increased to ca. 220 nm: this indicates the deposition of a TiO2 layer on the ZnO rods. The BET 

surface areas of ZnO nanorods and ZTNA (16.4 and 16.7 mm2/g, respectively) demonstrate the 

high surface/volume ratio of the core/shell material. EDX recorded at the upper ends of the 

ZnO/TiO2 nanorods further confirm the presence of titanium, oxygen and zinc in the nanorods. 

High-resolution TEM investigations of the composite materials are shown in Fig. 3d. The 
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observed fringes correspond to two different interplanar distances of 0.26 nm and 0.24 nm which 

agree well with the lattice spacings of the (002) ZnO plane and of the (103) anatase TiO2 plane. 

These results furthermore indicate the deposition of anatase TiO2 nanoparticles on the surface of 

ZnO nanorods.  

The Raman spectra of the ZnO nanorod arrays before (a) and after coating (b) are compared in Fig. 

4. All peaks observed for pristine ZnO could be assigned to the reference data for ZnO. The 

intense peak at 438 cm-1 can be identified as the E2 (high) mode, corresponding to the 

characteristic band of the hexagonal wurtzite ZnO phase. The peaks located at 334 cm-1 and 381 

cm-1 correspond to the 3E2H-E2L and A1 (TO) modes, respectively [17]. After coating with TiO2, 

the Eg mode of anatase TiO2 [18] was observed as an additional peak at 142 cm-1 (cf. symbols in 

Fig. 4), thereby providing additional evidence for the deposition of the anatase modification which 

agrees well with the results from XRD and HRTEM investigations. Moreover, no peaks were 

apparently observed at the A1 (LO) mode position of 576 cm-1 before and after coating: this 

indicates that the ZnO nanorod arrays maintain their high degree of crystallinity during the 

thermal treatment with minimal additional defects (such as O-vacancies, Zn-interstitials, or 

complexes thereof) [19]. Therefore, the resulting variation of chemical and physical properties is 

dominated by the TiO2 modification rather than by the variation of defects in the ZnO nanorods. 

In addition, as shown by the dashed lines, no significant shift was observed for the E2 mode 

position of ZNTA at 438 cm-1, thereby pointing to a minimum extent of both compressive and 

tensile stress [20]. The interactions between ZnO core and TiO2 shell are thus minimal so that 

most of the TiO2 nanoparticles are attached to the surface of ZnO nanorods rather than being 

firmly intergrown with the crystal lattice. 

3.2 Humidity sensing performance 

In order to study the synergistic effect of the combination of the ZnO nanorods with a TiO2 layer 

on the resulting humidity sensing performance, sensors based on pristine ZnO nanorods,TiO2 thin 

films and ZTNAs were fabricated (cf. section 2.1.4.) and their humidity sensing properties were 

compared. 

Fig. 5a shows the capacitance response curves of the sensors based on TiO2 film, ZnO nanorod 

arrays and ZTNA for selected RH values ranging from 11% to 95%. All sensor types display 

reproducible sensing responses. The response of the ZnO sample is proportional to the water 
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vapor concentration over the entire investigated RH range. However, this linear behavior applies 

only up to 85% RH for TiO2 films and ZTNA sensors. The RH dependent sensitivity values, 

defined as the ratio of the capacitance measured for the actual vapor concentration to the 

respective value for 11% RH, are compared in Fig. 5b. The sensitivity of the sensors based on 

ZTNAs is considerably enhanced in comparison with the sensors fabricated from the individual 

components. The sensitivity of the ZTNA sensors at 95% RH is about 8.96E4, thus being 31 and 

1380 times higher than that of pristine ZnO nanorod arrays (2.9E3) and TiO2 film (65) based 

sensors, respectively. Furthermore, it should be mentioned that the ZTNA sensors show a superior 

sensitivity not only with respect to pure ZnO and TiO2 but also in comparison with modified ZnO 

and TiO2 nanofibers (e.g. with LiCl and KCl as dopants) [21-23]. The notably enhanced 

sensitivity probably results from the larger surface area of ZnO nanorods that renders them an 

ideal substrate for surface coating with hydrophilic TiO2 particles. 

Moreover, response and recovery behavior are the key characteristics to evaluate the performance 

of humidity sensors as shown in Fig. 6. The actual values of response and recovery time upon 

exposure to 95% RH (defined as the time to achieve 90% of the total capacitance change in the 

case of adsorption and desorption process, respectively) are summarized for all three sensor types 

in Table 1. All of them exhibit fast response and recovery processes and the recovery time spans 

exceed the response periods. The sensor based on TiO2 film showed the fastest response and 

recovery to water vapor due to its low surface/volume ratio, whereas the ZnO nanorod 

arrays–based sensor exhibited the longest response and recovery times. The ZTNA sensors display 

intermediate values with respect to the ZnO and TiO2-based sensors, indicating that the temporal 

response of these humidity sensors could be optimized by fine-tuning the composition of the 

sensing layer. In addition, not only the sensitivity of ZTNA sensors is much higher than that of 

other two sensors, but their response and recovery times are also shorter than those of the sensor 

constructed from ZnO nanorod arrays. These results demonstrated that the enhanced sensitivity of 

ZTNA did not come at the cost of delayed response and recovery times compared to the ZnO 

nanorod arrays sensor. 

Fig. 7a shows the reproducibility of the response curves of ZTNA sensors under ambient 

conditions for the RH range from 11% to 95%. The stable maximum and minimum capacitance 

values confirm the good reproducibility of ZTNA sensors. The results furthermore demonstrate 
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that the interaction between water vapor and the surface of the nanorods is dominated by 

physisorption. Otherwise a baseline drift resulting from the incomplete desorption during 

chemisorption could be observed, because the bonding energy between the adsorbed molecules 

and the surface of nanorods of chemisorptions is much higher than that of physisorption [24]. 

The humidity hysteresis characteristics of the ZTNA based humidity sensor are shown in Fig. 7b. 

The black line (squares) represents the adsorption process, and the red line (circles) stands for the 

desorption process. Both lines are close with maximum deviation at 33% RH: this points to a 

threshold value for the transition between two different sensing mechanisms that are discussed in 

the following part (cf. 3.3). 

3.3 Sensing mechanism 

The sensing mechanisms of the above-mentioned humidity sensors were investigated through the 

analysis of complex impedance plots. The complex impedance plots (Nyquist diagrams) of 

sensors based on pristine ZnO nanorod arrays and on ZTNAs in the range of 20 Hz ~1 MHz are 

displayed in Fig. 8a-b. A semicircular Nyquist diagram indicates that the ZTNA sensor could be 

represented by parallel circuits of a resistor (Ra) and a capacitor (Ca), as shown in Fig. 9 a, where 

Ra and Ca are the resistance and capacitance of the nanorod arrays, respectively. Ra is 

corresponding to the real impedance at low frequency limiting and Ca can be achieved from the 

imaginary part. This semicircular Nyquist diagram indicates that the ZTNA sensor operates 

through a hopping mechanism, i.e. the discrete jump of charge carriers from one site to another 

over energy barriers. Under this circumstance, no continuous aquatic layer is formed owing to the 

insufficient adsorption of water vapor [25-27].  

With increasing adsorption, a linear tail occurred at lower frequencies accompanied by a 

significant decrease of the semicircular part. A basic element, Warburg impedance, was added in 

series with Ra to the equivalent circuit (Fig 9 b), which represents the involvement of diffusion of 

reactants [28]. If the adsorption is increased further, the resulting Nyquist diagram is a 45o line for 

all frequencies. Here, the electrolytic conduction mainly arises from the faster diffusion of protons 

in single or multilayers that are formed on the materials surface [29-30]. This facilitates carrier 

transportation and favors polarization as well, thereby allowing for a large capacitance response.  

The transition threshold of the two sensing mechanisms for the ZTNA based sensors is about 33% 

RH at room temperature in contrast to the transition point of 75% RH for the uncoated sample 
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(Fig. 8). In contrast to the absence of straight line plots for the sensors based on pristine ZnO 

nanorods at high frequencies even at 95% RH, a straight line at full frequency range was observed 

at 55% RH for the ZTNA based sensors. In combination with the decreasing value for the 

transition threshold, this behavior indicates that TiO2 coating enhances water adsorption on the 

sensor surface. The adsorption process is domineered by the rough surface of the TiO2 shell and its 

remarkable hydrophilicity. With the increment of humidity values, a capillary condensation takes 

place in the pores with smaller radius than the Kelvin critical radius on the surface of TiO2 and the 

ZnO/TiO2 interface [31], as shown in Fig 10. The formation of these pores is due to the nanoscale 

grain boundaries of the TiO2 shell [32].  

All in all, the introduction of the TiO2 shell leads to the adsorption of more water molecules by 

increasing the hydrophilicity of the surface area and by inducing capillary condensation. This 

furthermore favors the polarization of the adsorbed water molecules and gives rise to accelerated 

capacitance response. 

   

4. Conclusions 

Vertically aligned ZnO nanorod arrays were grown hydrothermally and subsequently coated with a 

TiO2 layer in a sol-gel process. The formation of a crystalline ZnO/TiO2 composite was confirmed 

through SEM, XRD, HRTEM and Raman spectroscopy investigations. The analytical results in 

their entirety demonstrated that the majority of the anatase TiO2 nanoparticles are located at the 

surface of ZnO nanorods instead of being doped into the ZnO lattice. The comparison of the 

humidity sensing performances of pristine TiO2 films, ZnO nanorods and ZTNA showed that the 

humidity sensing properties were considerably enhanced through coating of the nanorod template 

with an anatase TiO2 shell. The response and recovery behavior of the substrate was not affected 

by the composite formation. The analysis of complex impedance plots of both ZnO nanorods and 

ZTNA sensors in terms of equivalent circuit models was applied to assign detailed sensing 

mechanisms to these sensor types. The results underscore that the surface morphology and the 

high degree of hydrophilicity lead to the enhanced adsorption facilities and humidity sensing 

properties of the ZnO/TiO2 nanorod arrays. This demonstrates how the sensing properties of 

binary oxides can be combined in a “synergistic” fashion through the synthesis of nanostructured 

composites. 
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Figure Captions: 

Fig. 1 Schematic representation of the sensor test setup and of the constructed humidity sensors. 

Fig. 2 XRD patterns of (a) uncoated and (b) coated samples. 

Fig. 3 Representative SEM images of (a) ZnO seed layer; (b) ZnO nanorods; (c) ZTNA and (d) 

HRTEM image of the ZnO/TiO2 composite materials 

Fig. 4 Raman spectra of (a) pristine ZnO nanorod arrays and (b) ZTNAs.  

Fig. 5 (a) Time-dependent capacitance of sensors based on TiO2 thin film (black) and pristine ZnO 

nanorod arrays (green) compared to ZTNA sensors (blue) at various humidities; (b) comparison of 

the concentration-dependent sensitivity of the different sensor types.  

Fig.6 Response and recovery times of sensors based on pristine ZnO nanorod arrays, ZTNA and 

TiO2 thin film for RH values between 11% and 95%. 

Fig.7 (a) reproducibility and (b) hysteresis characteristics of humidity sensors based on ZTNA. 

Fig.8 Complex impedance plots of (a) pristine and (b) TiO2-coated ZnO nanorods for different 

relative humidities at room temperature. 

Fig.9 The equivalent circuits of sensors displaying (a) a hopping mechanism and (b) an ion 

diffusion mechanism (Ra: resistance of nanorod arrays, Ca: capacitance of nanorod arrays, Zi: 

Warburg impedance). 

Fig.10 Adsorption models for different nanorod types: (a) pristine ZnO nanorods; (b) ZnO/TiO2 

core/shell nanorods. 

Table 1. Response and recovery times of sensors based on TiO2 films, ZnO nanorods and 

ZnO/TiO2 nanorod arrays for the humidity range between 11% RH and 95% RH. 
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Table 1: 

Sample Response time (s) Recovery time (s) 

ZnO  nanorods 990.6 35.4 

TiO2 thin film   178.1 5.9 

ZTNAs 774.9 19.7 

Table(s)
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