Header

UZH-Logo

Maintenance Infos

Transcription of the Staphylococcus aureus cid and lrg murein hydrolase regulators is affected by sigma factor B


Rice, Kelly C; Patton, Toni; Yang, Soo-Jin; Dumoulin, Alexis; Bischoff, Markus; Bayles, Kenneth W (2004). Transcription of the Staphylococcus aureus cid and lrg murein hydrolase regulators is affected by sigma factor B. Journal of Bacteriology, 186(10):3029-3037.

Abstract

The Staphylococcus aureus lrg and cid loci are homologous operons that have been shown to regulate murein hydrolase activity and affect sensitivity to penicillin. Although the mode of action of these operons has not been demonstrated, a model based on the similarities of the lrgA and cidA gene products to the bacteriophage holin family of proteins has been proposed. In this study, the transcription organization and regulation of these operons were examined by Northern blot analyses. Unexpectedly, cidB and a gene located immediately downstream, designated cidC, were found to be cotranscribed on a 2.7-kb transcript. Maximal cidBC transcription occurred during early exponential growth, and high-level transcription of cidBC was dependent on the rsbU-mediated activation of the alternative sigma factor B (sigmaB). In contrast, lrgAB transcription in stationary phase was negatively regulated by sigmaB. Although cidABC transcription was not detected by Northern blot analysis, reverse transcriptase PCR revealed that these genes are also cotranscribed as a single RNA message in early exponential growth. Primer extension analysis revealed the presence of two cidBC transcription start sites, but no apparent sigmaB-dependent promoter consensus sequence was identified in these regions. The rsbU gene was also shown to have a positive impact on murein hydrolase activity but a negligible effect on sensitivity to penicillin-induced killing. These results suggest that the lrgAB and cidBC genes may be part of the S. aureus sigmaB-controlled stress regulon.

Abstract

The Staphylococcus aureus lrg and cid loci are homologous operons that have been shown to regulate murein hydrolase activity and affect sensitivity to penicillin. Although the mode of action of these operons has not been demonstrated, a model based on the similarities of the lrgA and cidA gene products to the bacteriophage holin family of proteins has been proposed. In this study, the transcription organization and regulation of these operons were examined by Northern blot analyses. Unexpectedly, cidB and a gene located immediately downstream, designated cidC, were found to be cotranscribed on a 2.7-kb transcript. Maximal cidBC transcription occurred during early exponential growth, and high-level transcription of cidBC was dependent on the rsbU-mediated activation of the alternative sigma factor B (sigmaB). In contrast, lrgAB transcription in stationary phase was negatively regulated by sigmaB. Although cidABC transcription was not detected by Northern blot analysis, reverse transcriptase PCR revealed that these genes are also cotranscribed as a single RNA message in early exponential growth. Primer extension analysis revealed the presence of two cidBC transcription start sites, but no apparent sigmaB-dependent promoter consensus sequence was identified in these regions. The rsbU gene was also shown to have a positive impact on murein hydrolase activity but a negligible effect on sensitivity to penicillin-induced killing. These results suggest that the lrgAB and cidBC genes may be part of the S. aureus sigmaB-controlled stress regulon.

Statistics

Citations

Dimensions.ai Metrics
47 citations in Web of Science®
47 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Microbiology
Life Sciences > Molecular Biology
Language:English
Date:2004
Deposited On:14 Aug 2012 06:58
Last Modified:23 Jan 2022 21:47
Publisher:American Society for Microbiology
ISSN:0021-9193
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1128/​JB.186.10.3029-3037.2004
PubMed ID:15126464
Full text not available from this repository.