Header

UZH-Logo

Maintenance Infos

Diminished Whole-brain but Enhanced Peri-sylvian Connectivity in Absolute Pitch Musicians


Jäncke, Lutz; Langer, Nicolas; Hänggi, Jürgen (2012). Diminished Whole-brain but Enhanced Peri-sylvian Connectivity in Absolute Pitch Musicians. Journal of Cognitive Neuroscience, 24(6):1447-1461.

Abstract

Several anatomical studies have identified specific anatomical features within the peri-sylvian brain system of absolute pitch (AP) musicians. In this study we used graph theoretical analysis of cortical thickness covariations (as indirect indicator of connectivity) to examine whether AP musicians differ from relative pitch musicians and nonmusicians in small-world network characteristics. We measured "local connectedness" (local clustering = γ), "global efficiency of information transfer" (path length = λ), "small-worldness" (σ = γ/λ), and "degree" centrality as measures of connectivity. Although all groups demonstrated typical small-world features, AP musicians showed significant small-world alterations. "Degree" as a measure of interconnectedness was globally significantly decreased in AP musicians. These differences let us suggest that AP musicians demonstrate diminished neural integration (less connections) among distant brain regions. In addition, AP musicians demonstrated significantly increased local connectivity in peri-sylvian language areas of which the planum temporale, planum polare, Heschl's gyrus, lateral aspect of the superior temporal gyrus, STS, pars triangularis, and pars opercularis were hub regions. All of these brain areas are known to be involved in higher-order auditory processing, working or semantic memory processes. Taken together, whereas AP musicians demonstrate decreased global interconnectedness, the local connectedness in peri-sylvian brain areas is significantly higher than for relative pitch musicians and nonmusicians.

Abstract

Several anatomical studies have identified specific anatomical features within the peri-sylvian brain system of absolute pitch (AP) musicians. In this study we used graph theoretical analysis of cortical thickness covariations (as indirect indicator of connectivity) to examine whether AP musicians differ from relative pitch musicians and nonmusicians in small-world network characteristics. We measured "local connectedness" (local clustering = γ), "global efficiency of information transfer" (path length = λ), "small-worldness" (σ = γ/λ), and "degree" centrality as measures of connectivity. Although all groups demonstrated typical small-world features, AP musicians showed significant small-world alterations. "Degree" as a measure of interconnectedness was globally significantly decreased in AP musicians. These differences let us suggest that AP musicians demonstrate diminished neural integration (less connections) among distant brain regions. In addition, AP musicians demonstrated significantly increased local connectivity in peri-sylvian language areas of which the planum temporale, planum polare, Heschl's gyrus, lateral aspect of the superior temporal gyrus, STS, pars triangularis, and pars opercularis were hub regions. All of these brain areas are known to be involved in higher-order auditory processing, working or semantic memory processes. Taken together, whereas AP musicians demonstrate decreased global interconnectedness, the local connectedness in peri-sylvian brain areas is significantly higher than for relative pitch musicians and nonmusicians.

Statistics

Citations

Dimensions.ai Metrics
46 citations in Web of Science®
48 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

226 downloads since deposited on 08 May 2012
24 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Scopus Subject Areas:Life Sciences > Cognitive Neuroscience
Language:English
Date:2012
Deposited On:08 May 2012 13:18
Last Modified:23 Jan 2022 21:50
Publisher:MIT Press
ISSN:0898-929X
Additional Information:Copyright: MIT Press
OA Status:Green
Publisher DOI:https://doi.org/10.1162/jocn_a_00227
PubMed ID:22524277
  • Content: Published Version