Abstract
The semicircular canals (SCCs; located in the inner ear) are the primary sensors for angular motion. Angular head movements induce a fluid flow in the SCCs. This flow is detected by afferent hair cells inside the SCCs. Canalithiasis is a condition where small particles disturb this flow, which leads to benign paroxysmal positional vertigo (top-shelf vertigo). The present work investigates the interaction between the fluid flow and the particles on the basis of an idealized analytical model. Numerical solutions of the full model and a thorough analytical study of the linearized model reveal the principal mechanisms of canalithiasis. We propose a set of dimensionless numbers to characterize canalithiasis and derive explicit expressions connecting these dimensionless numbers directly to the typical clinical symptoms.