Header

UZH-Logo

Maintenance Infos

Fluid-particle dynamics in canalithiasis


Obrist, D; Hegemann, S (2008). Fluid-particle dynamics in canalithiasis. Journal of the Royal Society Interface, 5(27):1215-1229.

Abstract

The semicircular canals (SCCs; located in the inner ear) are the primary sensors for angular motion. Angular head movements induce a fluid flow in the SCCs. This flow is detected by afferent hair cells inside the SCCs. Canalithiasis is a condition where small particles disturb this flow, which leads to benign paroxysmal positional vertigo (top-shelf vertigo). The present work investigates the interaction between the fluid flow and the particles on the basis of an idealized analytical model. Numerical solutions of the full model and a thorough analytical study of the linearized model reveal the principal mechanisms of canalithiasis. We propose a set of dimensionless numbers to characterize canalithiasis and derive explicit expressions connecting these dimensionless numbers directly to the typical clinical symptoms.

Abstract

The semicircular canals (SCCs; located in the inner ear) are the primary sensors for angular motion. Angular head movements induce a fluid flow in the SCCs. This flow is detected by afferent hair cells inside the SCCs. Canalithiasis is a condition where small particles disturb this flow, which leads to benign paroxysmal positional vertigo (top-shelf vertigo). The present work investigates the interaction between the fluid flow and the particles on the basis of an idealized analytical model. Numerical solutions of the full model and a thorough analytical study of the linearized model reveal the principal mechanisms of canalithiasis. We propose a set of dimensionless numbers to characterize canalithiasis and derive explicit expressions connecting these dimensionless numbers directly to the typical clinical symptoms.

Statistics

Citations

Dimensions.ai Metrics
21 citations in Web of Science®
23 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Otorhinolaryngology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Biotechnology
Life Sciences > Biophysics
Physical Sciences > Bioengineering
Physical Sciences > Biomaterials
Life Sciences > Biochemistry
Physical Sciences > Biomedical Engineering
Language:English
Date:October 2008
Deposited On:26 Nov 2008 12:47
Last Modified:23 Jan 2022 12:33
Publisher:Royal Society Publishing
ISSN:1742-5662
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1098/rsif.2008.0047
PubMed ID:18319210
Full text not available from this repository.