Header

UZH-Logo

Maintenance Infos

Adiponectin isoforms: a potential therapeutic target in rheumatoid arthritis?


Frommer, Klaus W; Schäffler, Andreas; Büchler, Christa; Steinmeyer, Jürgen; Rickert, Markus; Rehart, Stefan; Brentano, Fabia; Gay, Steffen; Müller-Ladner, Ulf; Neumann, Elena (2012). Adiponectin isoforms: a potential therapeutic target in rheumatoid arthritis? Annals of the Rheumatic Diseases, 71(10):1724-1732.

Abstract

OBJECTIVES: Several clinical studies have suggested the adipocytokine adiponectin is involved in the progression of rheumatoid arthritis (RA). From this point of view, adiponectin might present a new therapeutic target. However, as adiponectin also exerts beneficial effects in the human organism, a strategy that would allow its detrimental effects to be abolished while maintaining the positive effects would be highly favourable. To elucidate such a strategy, the authors analysed whether the different adiponectin isoforms induce diverging effects, especially with regard to rheumatoid arthritis synovial fibroblasts (RASF), a central cell type in RA pathogenesis capable of invading into and destroying cartilage.METHODS: Affymetrix microarrays were used to screen for changes in gene expression of RASF. Messenger RNA levels were quantified by real-time PCR, protein levels by immunoassay. The migration of RASF and primary human lymphocytes was analysed using a two-chamber migration assay.RESULTS: In RASF, the individual adiponectin isoforms induced numerous genes/proteins relevant in RA pathogenesis to clearly different extents. In general, the most potent isoforms were the high molecular weight/middle molecular weight isoforms and the globular isoform, while the least potent isoform was the adiponectin trimer. The chemokines secreted by RASF upon adiponectin stimulation resulted in an increased migration of RASF and lymphocytes.CONCLUSION: The results clearly suggest a pro-inflammatory and joint-destructive role of all adiponectin isoforms in RA pathophysiology, indicating that in chronic inflammatory joint diseases the detrimental effects outweigh the beneficial effects of adiponectin.

Abstract

OBJECTIVES: Several clinical studies have suggested the adipocytokine adiponectin is involved in the progression of rheumatoid arthritis (RA). From this point of view, adiponectin might present a new therapeutic target. However, as adiponectin also exerts beneficial effects in the human organism, a strategy that would allow its detrimental effects to be abolished while maintaining the positive effects would be highly favourable. To elucidate such a strategy, the authors analysed whether the different adiponectin isoforms induce diverging effects, especially with regard to rheumatoid arthritis synovial fibroblasts (RASF), a central cell type in RA pathogenesis capable of invading into and destroying cartilage.METHODS: Affymetrix microarrays were used to screen for changes in gene expression of RASF. Messenger RNA levels were quantified by real-time PCR, protein levels by immunoassay. The migration of RASF and primary human lymphocytes was analysed using a two-chamber migration assay.RESULTS: In RASF, the individual adiponectin isoforms induced numerous genes/proteins relevant in RA pathogenesis to clearly different extents. In general, the most potent isoforms were the high molecular weight/middle molecular weight isoforms and the globular isoform, while the least potent isoform was the adiponectin trimer. The chemokines secreted by RASF upon adiponectin stimulation resulted in an increased migration of RASF and lymphocytes.CONCLUSION: The results clearly suggest a pro-inflammatory and joint-destructive role of all adiponectin isoforms in RA pathophysiology, indicating that in chronic inflammatory joint diseases the detrimental effects outweigh the beneficial effects of adiponectin.

Statistics

Citations

Dimensions.ai Metrics
49 citations in Web of Science®
53 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

385 downloads since deposited on 04 Jun 2012
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Rheumatology Clinic and Institute of Physical Medicine
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Health Sciences > Immunology and Allergy
Health Sciences > Rheumatology
Life Sciences > Immunology
Life Sciences > General Biochemistry, Genetics and Molecular Biology
Language:English
Date:2012
Deposited On:04 Jun 2012 08:59
Last Modified:23 Jan 2022 21:53
Publisher:BMJ Publishing Group
ISSN:0003-4967
OA Status:Green
Publisher DOI:https://doi.org/10.1136/annrheumdis-2011-200924
PubMed ID:22532632
Project Information:
  • : FunderFP7
  • : Grant ID223404
  • : Project TitleMASTERSWITCH - Mechanisms to Attack Steering Effectors of Rheumatoid Syndromes with Innovated Therapy Choices