Header

UZH-Logo

Maintenance Infos

Using relict rockglaciers in GIS-based modelling to reconstruct Younger Dryas permafrost distribution patterns in the Err-Julier area, Swiss Alp


Frauenfelder, Regula; Haeberli, Wilfried; Hoelzle, Martin; Maisch, Max (2001). Using relict rockglaciers in GIS-based modelling to reconstruct Younger Dryas permafrost distribution patterns in the Err-Julier area, Swiss Alp. Norsk Geografisk Tidsskrift - Norwegian Journal of Geography, 55(4):195-202.

Abstract

Differences in mean annual air temperature between the Younger Dryas period and today were estimated at the fronts of 32 relict rockglaciers in the Err-Julier area, eastern Swiss Alps. The analyses were based on a case-by-case calculation of direct incoming solar radiation and mean annual air temperature using a digital elevation model (DEM) and meteo data of recent years. Our results suggest that mean annual air temperature during the Younger Dryas was lowered by c. 3°C to 4°C, and that the lower limit of permafrost occurrence was depressed considerably more than glacier equilibrium lines. This indicates strongly reduced precipitation (30% to 40% reduction) and much larger abundance of mountain permafrost at that time. A model simulation of the corresponding spatial permafrost distribution during the Younger Dryas indicates that glaciers in the study area were mostly surrounded by permafrost at that time and probably had a polythermal structure of englacial temperatures.

Abstract

Differences in mean annual air temperature between the Younger Dryas period and today were estimated at the fronts of 32 relict rockglaciers in the Err-Julier area, eastern Swiss Alps. The analyses were based on a case-by-case calculation of direct incoming solar radiation and mean annual air temperature using a digital elevation model (DEM) and meteo data of recent years. Our results suggest that mean annual air temperature during the Younger Dryas was lowered by c. 3°C to 4°C, and that the lower limit of permafrost occurrence was depressed considerably more than glacier equilibrium lines. This indicates strongly reduced precipitation (30% to 40% reduction) and much larger abundance of mountain permafrost at that time. A model simulation of the corresponding spatial permafrost distribution during the Younger Dryas indicates that glaciers in the study area were mostly surrounded by permafrost at that time and probably had a polythermal structure of englacial temperatures.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Downloads

2 downloads since deposited on 20 Jul 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Scopus Subject Areas:Social Sciences & Humanities > Geography, Planning and Development
Physical Sciences > General Earth and Planetary Sciences
Uncontrolled Keywords:Geography, Planning and Development, General Earth and Planetary Sciences
Language:English
Date:2001
Deposited On:20 Jul 2012 22:46
Last Modified:23 Jan 2022 22:06
Publisher:Taylor & Francis
ISSN:0029-1951
OA Status:Closed
Publisher DOI:https://doi.org/10.1080/00291950152746522