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Abstract

Inhibitory neurotransmission ensures normal brain 
function by counteracting and integrating excitatory 
activity. γ-Aminobutyric acid (GABA) is the main inhibi-
tory neurotransmitter in the mammalian central ner-
vous system, and mediates its effects via  two classes 
of receptors: the GABAA and GABAB receptors. GABAA 
receptors are heteropentameric GABA-gated chloride 
channels and responsible for fast inhibitory neurotrans-
mission. GABAB receptors are heterodimeric G protein 
coupled receptors (GPCR) that mediate slow and pro-
longed inhibitory transmission. The extent of inhibitory 
neurotransmission is determined by a variety of factors, 
such as the degree of transmitter release and changes 
in receptor activity by posttranslational modifications 
(e.g., phosphorylation), as well as by the number of 
receptors present in the plasma membrane available 
for signal transduction. The level of GABAB receptors at 
the cell surface critically depends on the residence time 
at the cell surface and finally the rates of endocytosis 
and degradation. In this review we focus primarily on 
recent advances in the understanding of trafficking 
mechanisms that determine the expression level of 
GABAB receptors in the plasma membrane, and thereby 
signaling strength.
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FUNCTIONS OF GABAB RECEPTORS

Metabotropic GABAB receptors are widely distributed th­
roughout the central nervous system where they mediate 
slow, prolonged inhibition to control neuronal excitation, 
and contribute to synaptic plasticity

[1]
.

GABAB receptors are present at pre­ and postsynaptic 
sites of  both inhibitory and excitatory neurons. Electron 
microscopy revealed that GABAB receptors are located 
predominantly at areas close to neurotransmitter release 
sites and at peri­ and extrasynaptic areas of  spines and 
dendrites, but only rarely directly at active zones or post­
synaptic densities

[2­7]
. This location of  GABAB receptors 

implies that they are not directly activated by synaptically 
released GABA. One mechanism to activate GABAB 
receptors requires intense neuronal activity, resulting in 
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a spill­over of  synaptically released GABA
[8]

. However, 
there are also other sources that may increase the ambi­
ent level of  GABA, such as activity­dependent release 
of  GABA from dendrites and glia cells

[9­11]
. Recently, it 

has been shown that basal synaptic activity generates a 
sufficient concentration of  ambient GABA to tonically 
induce a low level of  presynaptic GABAB receptor activa­
tion, which results in the control of  transmitter release

[12]
.

Binding of  GABA to the GABAB receptor activates Gi/
o­type G proteins

[13­18]
, which in turn modulate three major 

effector systems: adenylyl cyclases, voltage­sensitive Ca
2+

 

channels and inwardly­rectifying K
+
 channels (Figure 1).

The α subunit of  the activated G protein inhibits ad­
enylyl cyclase activity, which decreases cellular 3'­5'­cyclic 
adenosine monophosphate (cAMP) levels and affects the 
activity of  cAMP­dependent processes. Unfortunately, 
the contribution of  GABAB receptor­induced lowering 
of  cAMP levels to physiological processes is poorly inves­
tigated. So far it has been shown that it retards synaptic 
vesicle recruitment during sustained activity, which re­
duces transmitter release

[19]
. In addition, GABAB receptor­

mediated Gαi/o effects may be important for long­term 
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Figure 1  Structural organization of GABAB receptors. Functional GABAB receptors are heterodimers composed of the two subunits GABAB1 and GABAB2. Both 

subunits are heptahelical membrane proteins with a large extracellular located N-terminal domain containing a “Venus flytrap” module and a large intracellular C-terminal 
domain containing a coiled-coil protein-protein interaction module. GABAB1 and GABAB2 heterodimerize via their “Venus flytrap” and coiled-coiled domains. An endo-

plasmic reticulum (ER) retention/retrieval signal is present distal to the coiled-coil domain in GABAB1 and prevents ER exit of GABAB1 unless it is masked by heterodi-
merization with GABAB2. The “Venus flytrap” module of GABAB1 constitutes the GABA binding site, whereas that of GABAB2 is inactive and not involved in ligand bind-

ing. Instead, the heptahelical domain of GABAB2 contains a binding site for allosteric modulators, which affects the affinity of ligands binding to the GABA site. Binding 
of GABA results in the recruitment and activation of Gαi/o proteins via GABAB2. The activated Gαi/o subunit inhibits the adenylyl cyclase, resulting in lowered cAMP 
levels, while the Gbγ dimer activates K

+ channels and inhibits Ca2+
 channels, leading in either case to neuronal inhibition. There exist two isoforms of GABAB1, named 

GABAB1a and GABAB1b, which are generated by alternative promoter usage. They only differ by the additional presence of two so-called “sushi repeats” (protein-protein 
interaction modules) in the N-terminal domain of GABAB1a. GABA: γ-Aminobutyric acid; ATP: Adenosine-5'-triphosphate; cAMP: 3'-5'-cyclic adenosine monophosphate.



adaptations involving regulation of  protein kinase activity 
and gene transcription

[20­22]
. 

However, the most well established GABAB receptor 
actions are mediated via the bγ dimer of  the activated G 
protein. At presynaptic sites, voltage­sensitive P/Q­ and 
N­type Ca

2+
 channels are the predominant effectors of  

GABAB receptors
[23­27]

. GABAB receptor activated Gbγ 
inhibits Ca

2+
 channel activity by slowing their current 

activation kinetics
[28]

, which eventually results in reduced 
transmitter release. Postsynaptically, GABAB receptor 
effects are mainly mediated by the family of  G protein­
gated inwardly rectifying K

+
 channels (GIRK1­4 also 

called Kir3.1­3.4)
[29,30]

. Gbγ directly binds to GIRK chan­
nels

[31,32]
 and activates them

[33,34]
, resulting in an outward 

K
+
 current. This hyperpolarizes the membrane and con­

sequently inhibits neuronal activity. However, there is no 
strict mechanistic segregation of  pre­ (Ca

2+
 channels) and 

postsynaptic (K
+
 channels) effector systems. There is ac­

cumulating evidence that GABAB receptors also activate 
K

+
 channels at presynaptic sites, which assists inhibition 

of  transmitter release
[35­37]

. Conversely, there is also data 
for GABAB receptor mediated inhibition of  postsynaptic 
Ca

2+
 channels

[38­41]
. This provides an additional mechanism 

for controlling the excitability of  dendrites and spines. 
Thus, the current data is consistent with a complex pat­
tern of  regulating the activity of  multiple G protein­gated 
inwardly rectifying K

+
 channels and voltage­sensitive Ca

2+
 

channels, both at pre­ and postsynaptic sites, resulting in 
the inhibition of  neuronal activity.

To ensure efficient activation of  the effector system, 
GABAB receptors are localized in close proximity to their 
effector channels

[36,42]
 and may even constitute signaling 

complexes by physical interaction
[36,43]

.

MOLECULAR ORGANIZATION OF GABAB 

RECEPTORS

Although the GABAB receptor was discovered in 1980
[44]

, 
its molecular identity and characterization was delayed 
for almost 20 years until the first constituent of  the re­
ceptor was cloned. This delay was due to the fact that all 
biochemical attempts to purify the receptor failed and 
expression cloning proved unsuccessful. The develop­
ment of  high­affinity antagonists eventually permitted 
the successful screening of  expression libraries yielding 
two cDNAs derived from a single gene, GABAB1a and 
GABAB1b

[45]
. GABAB1a and GABAB1b are generated by dif­

ferential promoter usage
[46]

 and differ solely by the pres­
ence of  an additional N­terminal sequence in GABAB1a 
coding for two protein­protein interaction domains, so­
called “sushi domains”. GABAB1a and GABAB1b show all 
the characteristics of  class Ⅲ G protein­coupled recep­
tors (e.g., a very large extracellular domain, seven trans­
membrane­spanning (heptahelical) sequences and a large 
intracellular located C­terminal domain) (Figure 1). So 
far, no functional differences among GABAB receptors 
containing GABAB1a and GABAB1b have been detected. 
The cloning of  these first GABAB receptor constituents 

provided the basis for numerous research efforts ana­
lyzing the molecular characterization and function of  
GABAB receptors. It soon became clear that functional 
GABAB receptors are obligatory heterodimers composed 
of  GABAB1 (either GABAB1a or GABAB1b) and a second 
heptahelical membrane protein named GABAB2, sharing 
about 35% sequence identity with GABAB1

[47­51]
. Both 

subunits serve distinct functions within the heterodimeric 
receptor complex. GABAB1 contains the agonist and an­
tagonist binding site in the large N­terminal extracellular 
domain, which is most likely arranged in a Venus flytrap-
like structure

[52­54]
. Association with GABAB2 is necessary 

to keep the GABA binding site in a high affinity state[55,56]
. 

On the other hand, GABAB2 contains a binding site for 
allosteric modulators, which is not however associated 
with the N-terminal Venus flytrap domain, but is located 
in the heptahelical domain

[57]
. Binding of  ligands to this 

site does not directly activate the GABAB receptor but 
instead affects the affinity of  orthosteric agonists and 
antagonists to GABAB1

[58]
. Finally, GABAB2 is responsible 

for G protein activation
[56,59­63]

 and plays an important role 
in cell surface trafficking of  the heterodimerized receptor 
complex by masking an arginine­based endoplasmic re­
ticulum (ER) retention/retrieval (RXR) signal present in 
the C­terminal domain of  GABAB1

[64­68]
. 

THE ROLE OF DESENSITIZATION 

AND PHOSPHORYLATION ON THE 

AVAILABILITY OF FUNCTIONAL GABAB 

RECEPTORS

Prolonged exposure of  G protein coupled receptors 
(GPCR) to agonists generally leads to a complex series 
of  events in order to attenuate or terminate signal trans­
duction, protecting the cell from overstimulation. Signal 
transduction is often attenuated by desensitization of  the 
receptors (i.e., abrogating signaling), although the ago­
nist is still present

[69,70]
. Desensitization of  many GPCRs 

involves phosphorylation­dependent uncoupling of  the 
receptor from the G proteins, followed by internalization 
of  the receptor. Activated GPCRs are usually phosphory­
lated by G protein­coupled receptor kinase (GRKs) at 
serine and/or threonine residues residing in the carboxyl­
terminal tail­ or intracellular loop regions, which rapidly 
attenuates receptor responses. Phosphorylation leads to 
the recruitment of  arrestins, which is thought to sterically 
prohibit signaling to G proteins and induces internaliza­
tion of  the receptor by linking it to components (clathrin, 
AP2 complex) of  the endocytosis machinery

[69,70]
. Inter­

nalized receptors are then either degraded in lysosomes 
or are dephosphorylated and subsequently recycled to 
the plasma membrane, where they are again available for 
signaling. 

It is well known that prolonged activation of  GABAB 
receptors commonly leads to their desensitization. Re­
cent studies suggest that there might be more than one 
mechanism for desensitization of  GABAB receptors

[71­75]
, 
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which does not follow the classical desensitization pat­
tern of  GPCRs described above (Figure 2). Distinct de­
sensitization mechanisms for GABAB receptors may be 
operative in different neuronal populations. 

A study conducted in mouse cerebellar granule cells 
showed that GRK4, which is mainly expressed in testes 
and cerebellum

[69,76,77]
, promotes agonist­induced desensiti­

zation of  GABAB receptors via direct association, but does 
not involve GABAB receptor phosphorylation

[78]
. These 

findings were confirmed by Kainaide et al
[75]

, who dem­
onstrated that the association of  GABAB2 with GRK4 or 
GRK5, but not GRK2, ­3 or ­6, leads to agonist­induced 
receptor desensitization in Xenopus oocytes and baby ham­
ster kidney cells. Interestingly, GRK4 and ­5­mediated 
desensitization was partially suppressed by application of  
S(+)­ketamine, which leads to inhibition of  the GABAB 
receptors/GRK complex formation by an as yet uniden­
tified mechanism

[79]
. It is currently not understood how 

GRK4 and ­5 mediate desensitization of  GABAB recep­
tors. However, it might well be that the binding of  GRK4 
and ­5 disrupts GABAB receptor/G­protein interaction. 

On the other hand, for cortical and hippocampal neu­
rons, a phosphorylation­dependent desensitization mecha­
nism of  GABAB receptors was reported

[74]
. This mecha­

nism is based on the direct interaction of  NEM­sensitive 
fusion (NSF) protein with the C­terminal domains of  
GABAB1 and GABAB2, which primes the receptor for 
recruitment of  protein kinase C (PKC). The data indicate 
that the association of  GABAB receptors with NSF is a 
prerequisite for recruiting PKC to the receptor upon ago­
nist activation. PKC phosphorylates the receptor leading 
to its desensitization, and induces dissociation of  NSF 
from the receptors. The precise roles of  NSF and PKC 
in this complex process remain to be determined. NSF 
might be required for unmasking phosphorylation sites of  
the receptor or involved in PKC activation. In addition, 
it is unclear whether NSF dissociates from the receptor 
before desensitization occurs or whether releasing NSF 
initiates recovery of  the receptor from desensitization. 

Another factor determining desensitization of  GABAB 
receptors was recently discovered by functional pro­
teomics

[80]
. Members of  the potassium channel tetramer­
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Figure 2  Mechanisms of GABAB receptor desensitization. Three distinct mechanisms have been so far implicated in the desensitization of GABAB receptors. In 

cerebellar granule cells, G protein receptor kinase (GRK) 4 and 5 associate with GABAB receptors and induce desensitization of the receptors in a phosphorylation-
independent manner. In cortical and hippocampal neurons, desensitization of the receptors involves the interaction of NEM-sensitive fusion protein (NSF) with GABAB1 

and GABAB2, which is thought to prime the receptor for phosphorylation by protein kinase C (PKC). Association of potassium channel tetramerization domain-contain-

ing (KCTD) proteins 12 and 12b with the C-terminus of GABAB2 appears to render the receptor complex competent for desensitization. GABA: γ-Aminobutyric acid.
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ization domain­containing (KCTD) protein family were 
found to interact as tetramers with the C­terminus of  
GABAB2, generating high­molecular mass protein com­
plexes. Depending on the co­expressed KCTD subtype, 
distinct parameters of  GABAB receptor function were af­
fected, such as agonist potency, signaling onset or desen­
sitization. Interestingly, only when GABAB receptors were 
co­expressed with KCTD­12 or ­12b desensitization of  
GABAB receptors was observed, whereas in the presence 
of  KCTD­8 or ­16 the receptors displayed no desensiti­
zation

[80]
. This finding may explain the observation that 

GABAB receptor desensitization varies among different 
neuronal populations. One striking example is the ven­
tral tegmental area (VTA). GABAB receptors expressed 
in GABAergic neurons of  the VTA display baclofen­
induced, largely non­desensitizing, currents, whereas 
in dopaminergic neurons of  the VTA baclofen elicited 
desensitizing currents

[81]. These findings suggest that the 
general ability of  GABAB receptors to desensitize may be 
determined by the associated KCTD subtype, which may 
then recruit distinct desensitization mechanisms depend­
ing on the neuronal population. 

Interestingly, PKA­dependent phosphorylation ap­
pears to counteract desensitization of  GABAB receptors. 
Couve et al

[71]
 showed that PKA exclusively phosphory­

lates serine 892 (S892) in the C­terminal domain of  
GABAB2, resulting in reduced receptor desensitization. 
This effect on desensitization can be overcome by ac­
tivation of  the receptors, which results in inhibition of  
adenylyl cyclases, reduced cAMP levels and consequently 
diminished PKA activity and GABAB2­S892 phosphory­
lation. The precise mechanism as to how PKA phos­
phorylation of  GABAB2­S892 affects desensitization of  
GABAB receptors remains unclear. There is an indication 
that it stabilizes cell surface GABAB receptors and there­
by increases effector coupling

[71,82]
. This is, however, un­

likely because it is now well accepted that prolonged ago­
nist exposure does not trigger increased internalization 
of  cell surface receptors

[78,82­85]
. However, GABAB2­S892 

phosphorylation provides a mechanism for regulating the 
extent of  GABAB receptor desensitization by the activity 
of  Gαs­coupled GCPRs that enhance PKA activity. 

Another kinase that is involved in regulating GABAB 
receptor activity is the 5’AMP­dependent protein kinase 
(AMPK). AMPK directly binds to the C­terminus of  
GABAB1 and phosphorylates S917 and S783 in the C­ter­
minal domains of  GABAB1 and GABAB2, respectively

[86]
. 

Functional analysis revealed that phosphorylation of  
S783 resulted in a stabilization of  baclofen­induced K

+
 

currents
[86]

. This effect has been shown to be of  particu­
lar relevance in limiting neuronal cell death in experimen­
tal ischemia. Anoxic or ischemic conditions are associated 
with neuronal over­excitation, a decline in cellular ade­
nosine­5'­triphosphate (ATP) and a rise in Ca

2+
 and AMP 

levels, which are all factors activating AMPK
[87,88]

. Under 
such conditions, increased phosphorylation of  GAB­
AB2­S783 was detected along with an over­expression of  
a GABAB2 mutant that cannot be phosphorylated at this 

site associated with increased neuronal death
[86]

. These 
findings support a mechanism in which AMPK functions 
as a metabolic sensor that detects severe cellular stress 
and phosphorylates, amongst others, GABAB receptors. 
This is thought to result in enhanced GABAB receptor 
signaling that counteracts over­excitation of  the neuron 
and limits neuronal death. 

REGULATION OF GABAB RECEPTORS BY 

TRAFFICKING

The lifecycle of  a plasma membrane protein like the 
GABAB receptor starts with its synthesis at the rough 
ER where the nascent protein is co­translationally in­
corporated into the ER membrane. After folding, initial 
posttranslational processing, and assembly, the receptor is 
exported to the Golgi apparatus where it is further pro­
cessed and finally transported via the trans­Golgi network 
to the plasma membrane. After a certain time span of  
function, the receptor is internalized and recycled back 
into the plasma membrane for another cycle of  function, 
or is eventually degraded into lysosomes. To ensure a 
constant number of  receptors in the plasma membrane 
for signaling, these trafficking events need to be precisely 
coordinated. On the other hand, regulation of  each of  
the different trafficking steps permits adjusting the num­
ber of  cell surface receptors, and thus signaling strength, 
according to the physiological requirements. 

ER export of GABAB receptors
Little is known about the early stages in the lifecycle of  
GABAB receptors. So far it is clear that exit of  heterodi­
meric GABAB receptors from the ER is controlled by an 
arginine­based ER retention/retrieval signal (RXR) pres­
ent in the C­terminal domain of  GABAB1

[64­66]
. The mech­

anism that prevents cell surface trafficking of  GABAB1 
appears to involve the coat protein complex Ⅰ (COP Ⅰ ), 
which plays a central role in the retrograde transport of  
proteins from the Golgi apparatus back to the ER

[89]
. 

COP I binds to the ER retention/retrieval signal of  
GABAB1 and shuttles monomeric GABAB1 that reached 
the cis­Golgi apparatus back to the ER. Heterodimer­
ization with GABAB2 masks the ER retention/retrieval 
signal and permits forward transport

[64­68]
. In contrast 

to GABAB1, monomeric GABAB2 can leave the ER and 
reach the cell surface. However, it is assumed that the 
GABAB2 expression level in the ER is a limiting factor 
for ER exit of  the heterodimeric GABAB receptors. This 
mechanism is thought to ensure that only correctly fold­
ed and assembled (i.e., functional) receptors are exported 
to the cell surface. 

Endocytosis of GABAB receptors
There are two principal mechanisms by which GPCRs 
are internalized from the plasma membrane, constitutive 
endocytosis and agonist­induced endocytosis. Constitu­
tive endocytosis constantly removes receptors from the 
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cell surface, whereas agonist­induced endocytosis initiates 
removal of  receptors from the plasma membrane upon 
activation of  the receptors and ensures fast termina­
tion of  signaling. It is now well established that GABAB 
receptors undergo constitutive endocytosis, whereas the 
presence of  agonist­induced internalization of  the recep­
tors is less clear.

Heterologously expressed, as well as neuronal, GABAB 
receptors display fast constitutive internalization, as evi­
denced by distinct experimental approaches including 
immunofluorescence staining and microscopy, live cell im­
aging and cell surface biotinylation methods

[83,84,90­93]
. Con­

stitutive internalization of  GABAB receptors is a fast pro­
cess, as shown by the rapid loss of  labeled receptors from 
the cell surface, which reaches a plateau after 10­30 min 
(40% of  labeled receptors remain at the cell surface), with 
rates of  internalization of  ranging from 2­10 min

[92­94]
. 

GABAB receptors internalize as heterodimers and are not 
dissociated into its subunits prior to endocytosis

[84,90,92,95]
. 

The rate of  internalization appears to be determined by 
GABAB2. GABAB1, which contains an inactivated ER 
retention signal so that it is exported to the plasma mem­
brane, displays a considerably faster rate of  internaliza­
tion than the GABAB1,2 heterodimer

[92]
. This is due to a 

dileucine motif  within the coiled­coil domain of  GABAB1, 
which gets masked upon assembly with GABAB2. 

The data so far suggest that for endocytosis, GABAB 
receptors are recruited to clathrin­coated pits and inter­
nalized in a dynamin­dependent manner

[83,90,95]
. Clathrin­

coated pits are composed of  clathrin heavy and light 
chains that form a polymeric lattice and contain numer­
ous adaptor and endocytic accessory proteins. For endo­
cytosis, the cargo­loaded clathrin­coated pit invaginates 
and is eventually released from the plasma membrane 
in a GTP­dependent reaction mediated by dynamin

[96]
. 

There is evidence based on colocalization and immuno­
precipitation data that GABAB receptors interact with the 
AP2 adaptor, which is one of  the adaptor complexes that 
recruit membrane proteins to clathrin­coated pits

[83,84,90]
.

Colocalization studies with marker proteins for vari­
ous endosomal compartments revealed that endocytosed 
GABAB receptors first enter early endosomes and are 
then either sorted to Rab4 or Rab11­positive recycling 
endosomes, or to Rab7-positive late endosomes, and fi­
nally to lysosomes for degradation

[84,90,92,95,97,98]
.

In addition to the colocalization data, there is also func­
tional evidence that endocytosed GABAB receptors consti­
tutively recycle back to the cell surface. Using immunofluo­
rescence staining and tagged GABAB receptors transfected 
into hippocampal neurons Vargas et al

[90]
 showed that a 

significant fraction of  endocytosed receptors recycle back 
to the cell surface. Quantitative cell surface biotinylation 
and immunofluorescence­based methods indicate that 
the vast majority of  native GABAB receptors in cortical 
neurons are rapidly recycled to the plasma membrane. 
After 15 min, about half  of  the internalized receptors 
have recycled back to the cell surface, and after 30 min 

this has increased to the majority of  the receptors
[84,94]

.
In summary, the current data indicate that GABAB 

receptors constitutively internalize at a high rate via the 
classical clathrin­dependent pathway and rapidly recycle 
back to the cell surface. Since endocytosis and recycling 
are highly energy­consuming processes, this mechanism 
is most likely of  significant physiological relevance. The 
most obvious explanation is that a high rate of  consti­
tutive internalization and recycling generates a pool of  
intracellular receptors that can be immediately inserted 
into the plasma membrane to increase the cell surface 
number of  receptors by increasing the rate of  recycling 
while leaving the rate of  internalization constant. In the 
case of  synaptic AMPA receptors, such a mechanism has 
been proposed to contribute to increasing the level of  the 
receptors during the early phase of  long­term potentia­
tion, which is thought to underlie learning and memory 
formation

[99]
.

Degradation of GABAB receptors 
Most cell surface receptors are eventually degraded in ly­
sosomes, the major catabolic cellular compartment. After 
endocytosis, the endocytic vesicles carrying the receptors 
fuse with early endosomes, which then mature to late 
endosomes containing the material destined for degrada­
tion. Mature late endosomes are competent to fuse with 
lysosomes that contain a variety of  hydrolases for the 
breakdown of  all kinds of  macromolecules

[100]
. 

There is now solid data that, at the end of  their life­
time, GABAB receptors are endocytosed and degraded in 
lysosomes. This is evidenced by the intracellular accumu­
lation of  internalized GABAB receptors upon inhibition 
of  lysosomal function

[83,84,101]
 and the colocalization of  

intracellular GABAB receptors with marker proteins for 
late endosomes and lysosomes

[84,92]
. GABAB receptors 

are most likely sorted by the ESCRT (endosomal sorting 
complex required for transport) machinery to lysosomes, 
because the knockdown of  tumor susceptibility gene 101 
(TSG101), an integral component of  the ESCRT ma­
chinery, prevents degradation of  the receptors

[101]
. Three 

distinct ESCRT complexes sequentially target mono­ and 
K63­linked polyubiquitinated membrane proteins to late 
endosomes

[102]
. However, it remains to be shown whether 

GABAB receptors are ubiquitinated and whether ubiqui­
tination serves as a lysosomal sorting signal. 

Another unresolved issue is how the decision is made 
as to whether a receptor is sorted to the degradation 
pathway. As discussed above, the vast majority of  en­
docytosed GABAB receptors recycle back to the plasma 
membrane and only few are degraded. However, pharma­
cological inhibition of  recycling leads to rapid lysosomal 
degradation of  the receptors (about 50% of  the total 
receptor population within 30 min)

[84]
. This indicates that 

recycling and degradation of  GABAB receptors is tightly 
controlled, and decreasing the rate of  recycling consti­
tutes a mechanism to rapidly reduce the receptor number 
(discussed below).
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Regulation of cell surface GABAb receptors by 

glutamatergic excitatory activity
GABAB receptors control glutamate signaling via presyn­
aptic and postsynaptic mechanisms. They are abundantly 
expressed at glutamatergic synapses

[2­5,103]
 where they are 

activated by GABA spillover from adjacent GABAergic 
terminals and inhibit glutamate release

[8,104­106]
. This limits 

activation of  postsynaptically located excitatory gluta­
mate receptors (AMPA/kainate and NMDA receptors). 
Although GABAB receptors are also located in close 
proximity to AMPA and NMDA receptors they do not 

appear to directly modulate AMPA and NMDA receptor 
excitatory postsynaptic currents (EPSCs)

[105]
. However, 

activation of  postsynaptic GABAB receptors seem to 
limit Ca

2+-influx through NMDA receptors by inhibition 
of  the cAMP/PKA signaling pathway, which normally 
enhance NMDA receptor Ca

2+
 conductance

[105]
.

Besides the prominent regulation of  glutamate sig­
naling by GABAB receptors, there is now evidence that 
glutamatergic activity, in return, may affect GABAB re­
ceptor expression to attenuate inhibitory control (Figure 
3). Application of  glutamate to cultured neurons dra­
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Figure 3  Regulation of cell surface GABAB receptors by trafficking. A: Under normal conditions GABAB receptors are constitutively internalized and recycled back to the 
plasma membrane. Only a small fraction of receptors are sorted to lysosomes for degradation; B: Sustained activation of glutamate receptors [primarily 2-amino-3-(5-methyl-
3-oxo-1,2-oxazol-4-yl) propanoic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptors] and L-type voltage-gated Ca2+ channels raises intracellular Ca2+

 levels. This 

induces phosphorylation of GABAB1 at serine 867 by calmodulin-dependent protein kinaseⅡ (CaMKⅡ) and of GABAB2 at serine 783 by adenosine monophosphate (AMP) 
kinase, followed by slow dephosphorylation, by protein phosphatase 2 (PPA2). These events shift the recycling/degradation equilibrium towards degradation so that the 
majority of GABAB receptors are no longer recycled, but instead degraded in lysosomes. Since constitutive endocytosis of the receptors remains unaffected, this mechanism 
results in a rapid down-regulation of GABAB receptors. AMPK: 5’AMP-dependent protein kinase; GABA: γ-Aminobutyric acid; VSCCs: Voltage-sensitive calcium channels.
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matically down­regulates cell surface GABAB receptors 
and GABAB receptor­activated currents

[90,94,97,98]. Specific 
activation of  AMPA receptors

[94]
 or NMDA recep­

tors
[97,98] was sufficient to induce the down-regulation of  

GABAB receptors. Interestingly, the kinetics of  AMPA­
induced down­regulation of  GABAB receptors was sig­
nificantly slower than that induced by glutamate and was 
accelerated upon co­activation of  group Ⅰ metabotropic 
glutamate receptors

[94]
. These findings indicate that 

beside the ionotropic AMPA and NMDA receptors, 
metabotropic glutamate receptors also contribute to 
the glutamate­induced down­regulation of  GABAB 
receptors. The underlying mechanism of  this rapid 
down­regulation of  GABAB receptors is a shift of  the 
recycling/degradation equilibrium towards lysosomal 
degradation

[94,97]
. Glutamate application reduced the rate 

of  GABAB receptor recycling without altering the rate 
of  their internalization and was fully restored after in­
hibition of  lysosomal degradation. The precise intracel­
lular signaling cascade leading to the glutamate­induced 
shift in sorting the GABAB receptors preferentially to 
the degradation pathway is currently not fully resolved. 
It is clear that the down­regulation of  GABAB recep­
tors depends on the influx of  Ca

2+[94,98]
, which is most 

likely mediated by L­type voltage­gated Ca
2+

 channels
[94]

. 
Two downstream effector systems were identified to be 
involved in the down­regulation of  GABAB receptors 
(Figure 3). One depends on phosphorylation of  serine 
867 (S867) in GABAB1 by Ca

2+
/calmodulin­dependent 

protein kinase Ⅱ (CaMKⅡ)
[98]

. The other involves phos­
phorylation of  serine 783 (S783) in GABAB2 by AMP 
kinase and subsequent dephosphorylation by protein 
phosphatase 2A (PP2A)

[97]
. Mutational inactivation of  

each phosphorylation site prevented glutamate­induced 
down­regulation of  GABAB receptors. However, while 
the cell surface expression of  the receptors containing 
the mutant GABAB1(S867A) was normal

[98]
, the mutant 

GABAB2(S783A) was expressed to a significantly lesser 
level in the plasma membrane

[97]
. This suggests that 

phosphorylation of  S783 in GABAB2 is involved in sort­
ing the receptors to the recycling pathway, while phos­
phorylation of  S867 in GABAB1 may constitute a direct 
signal for sorting the receptors to lysosomal degradation. 
Alternatively, phosphorylation of  GABAB1(S867) may 
be required for dephosphorylation of  S783 in GABAB2, 
for instance by recruiting PPA2 to the receptor. In this 
respect it would be very interesting to test whether phos­
phorylation of  GABAB1(S867) by CaMKⅡ is required 
for dephosphorylation of  GABAB2(S783) by PPA2.

What is the physiological relevance of  this mecha­
nism? Since glutamate­induced down­regulation of  GAB­
AB receptors has so far only been studied in cultured neu­
rons, the role of  this process in vivo remains to be shown. 
However, there are physiological, as well as pathological, 
conditions involving sustained activity of  glutamate re­
ceptors where this mechanism might be operative. Under 
pathological conditions associated with excessive activa­
tion of  glutamate receptors, such as ischemia, down­

regulation of  GABAB receptors results in diminished 
inhibitory control and may further enhance excitotoxicity 
and neuronal cell death. This view is supported by an 
in vitro model of  ischemia where total GABAB2 protein 
levels were found to be strongly reduced 60 min after 
the ischemic insult

[107]
. Likewise, in an in vivo model of  

hypoxia/ischemia, significantly reduced levels of  GABAB 
receptors were detected

[108]
. 

Under normal physiological conditions, glutamate­
induced down­regulation of  GABAB receptors may con­
tribute to the process of  long­term potentiation, which 
is thought to be the molecular basis for learning and 
memory formation, as long­term potentiation is associ­
ated with sustained activity of  glutamate receptors

[109]
. 

In this scenario, enhanced glutamatergic activity would 
induce the down­regulation of  GABAB receptors and 
consequently relieve the synapses from inhibition, result­
ing in a further increase of  synaptic excitability. 

CONCLUSION

Trafficking events play a pivotal role in the cell surface 
availability of  receptors and largely determine their signal­
ing strength. Currently, we are only beginning to identify 
and understand the trafficking mechanisms of  GABAB 
receptors and how cell surface expression of  the recep­
tors is regulated. In particular, we almost completely lack 
knowledge on forward trafficking of  GABAB receptors 
from the ER via the Golgi network to the plasma mem­
brane. In addition, mechanisms on the targeting of  the 
receptors to specific sites in the neuron are unknown. 
There is an initial indication that GABAB1 may be trans­
ported independent of  GABAB2 within the ER into den­
drites and are then assembled and exported to the plasma 
membrane

[110]
. This finding implies that heterodimeriza­

tion of  GABAB receptors is a spatially and temporally 
controlled mechanism, and would provide an additional 
level to regulate cell surface expression of  the receptors. It 
is now clear that GABAB receptors are constitutively en­
docytosed via the clathrin and dynamin­dependent path­
way, and are predominantly recycled back to the plasma 
membrane with only a minor fraction being degraded in 
lysosomes. The equilibrium of  sorting the receptors to 
the recycling and degradation pathway appears to be con­
trolled by phosphorylation/dephosphorylation events and 
regulated by changes in neuronal activity associated with 
increased influx of  Ca2+

. It will be a major future effort 
to unravel the mechanisms involved in trafficking, sort­
ing and degradation of  GABAB receptors and how they 
are regulated by physiological and pathological stimuli. It 
is now well established that receptor trafficking regulates 
signal transduction and that disturbances in these mecha­
nisms may contribute to disease states

[111]
. Since GABAB 

receptors have been implicated in a variety of  neurological 
disorders­ranging from epilepsy, addiction, schizophrenia, 
depression, anxiety to chronic pain­it is likely that altered 
GABAB receptor trafficking is involved, at least to some 
extent, in these diseases. We expect that a deeper knowl­
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edge of  the trafficking mechanisms of  GABAB receptors 
under physiological and pathological conditions will pro­
vide the basis for the development of  novel and highly 
selective future therapeutic interventions.
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