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Abstract

There are now numerous options available to
achieve various tasks in bioinformatics, but,
as yet, little progress has been made to cap-
ture the common practice by analysing usage
and mentions of databases and tools within the
literature. In this paper we analyse the vari-
ability and ambiguity of database and soft-
ware name mentions and provide a set of 30
full-text documents manually annotated on the
mention level. Our analyses show that identi-
fication of mentions of databases and tools is
not a task that can be achieved through dictio-
nary matching alone: our baseline dictionary
look-up achieved a F-score of just over 50%.
This is primarily because of high variability
and ambiguity in database and software men-
tions contained within the literature and due to
the extensive number of new resources intro-
duced. We characterise the issues with vari-
ous mention types and propose potential ways
of capturing additional database and software
mentions in the literature.

1 Introduction

Bioinformatics and computational biology widely
rely on domain database and software creation to
support data collection, aggregation and analysis
and, as such, have been reported in research pa-
pers, typically as part of the methods section. In
addition, many papers introduce new databases and
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tools. However, little progress has been made to cap-
ture the common bioinformatics practice on a large-
scale by analysing usage and mentions of databases
and tools within the literature!.

Named entity recognition (NER) has seen wide
usage in recent years in identifying mentions of en-
tities of different types in the literature. Within the
fields of biology and bioinformatics, these have been
used to capture species (Gerner et al., 2010), pro-
teins/genes (Hirschman et al., 2005) and chemicals
(Kolluru et al., 2011). NER enables automated lit-
erature insight (Zweigenbaum et al., 2007) and pro-
vides input to other text-mining applications.

Issues of naming inconsistencies, numerous syn-
onyms and acronyms, and an inability to distinguish
entity names from common words in a natural lan-
guage on top of fuzzy definitions of concepts, make
NER an increasingly difficult task (Dingare et al.,
2005; Leser and Hakenberg, 2005). Still for some
tasks, NER tools achieve relatively high precision
and recall scores. For example, LINNAEUS could
achieve F-scores around the 95% mark for species
name recognition and disambiguation on the men-
tion and document levels (Gerner et al., 2010). On
the other hand, gene names, for example, are known
for ambiguity and variability, resulting in lower re-
ported F-scores. For example, ABNER recorded

"Throughout this paper, we will mention numerous
databases and tools by name as examples. A full list of refer-
ences and web-links to all of these can be found on our website.



an F-score of just under 73% for strict-match gene
name recognition and 85% with some boundary er-
ror toleration (Settles, 2005).

In this paper we aim to analyse the variability and
ambiguity of database and software name mentions
in the literature. Similarly to numerous databases
with gene names and symbols, there are several in-
ventories that list available database and software
resources, including the NAR databases and web-
services special issues (Brazas et al., 2011; Galperin
and Cochrane, 2011), ExPASy2, the Online Bioin-
formatics Resources Collection (Chen et al., 2007),
etc.

Some work has been done on automated extrac-
tion of database and software names from the liter-
ature. For example, OReFiL (Yamamoto and Tak-
agi, 2007) utilises URLs to recognise new resources
within articles. BIRI (Biolnformatics Resource In-
ventory) uses a series of hand crafted regular expres-
sions to automatically capture resource names, their
functionality and classification from paper titles and
abstracts (de la Calle et al., 2009). BIRI success-
fully extracted resource names in 94% of cases in
a test corpus, which consisted of 392 abstracts that
matched a search for “bioinformatics resource” and
8 documents that were manually included to test do-
main robustness. However, both of these tools bi-
ased their evaluation to resource rich text which pre-
vents full understanding of false negative errors.

This paper aims to analyse database and software
name mentions in the literature to evaluate the po-
tential difficulties in automated extraction. We fo-
cus on database and software names in the computa-
tional biology literature and provide a set of 30 full-
text documents manually annotated on the mention
level. Although we focus here on bioinformatics re-
sources, we note that the challenges encountered in
database and software recognition are a generic is-
sue and not unique to this domain (Kovacevi¢ et al.,
2012).

2 Methods

For the purpose of this study, we define databases
as any electronic resource such as database, on-
tology, repository or classification resource which
stores records in a structured form, and provides

http://expasy.org/

unique identifiers to each record. Examples in-
clude SCOP (a database of protein structural clas-
sification), UniProt (a database of protein sequences
and functional information), Gene Ontology (ontol-
ogy that describes gene attributes), etc. We adopt
Wikipedia’s definition of software’: “a collection of
computer programs ... that provides the instructions
for telling a computer what to do and how to do
it” (e.g., BLAST, for automated sequence compari-
son). We use program and tool as synonyms for soft-
ware, and also include mentions of web-services as
well as package names (e.g., R packages from Bio-
Conductor). We explicitly exclude database record
numbers/identifiers (e.g. GO:0002474, QSHWBO0),
file formats (e.g. PDF), programming languages
and their libraries (e.g., Python, BioPython), oper-
ating systems (e.g. Linux), algorithms (e.g. Merge-
Sort), methods (e.g. ANOVA, Random Forests) and
approaches (e.g. Machine Learning, Dynamic Pro-
gramming) from this task. When annotating a men-
tion of database or software in text, associated des-
ignators of resources (e.g., database, software) are
included only if part of the official name (e.g., Gene
Ontology).

We manually annotated a gold standard corpus
consisting of 25 full-text articles from BMC Bioin-
formatics and PLoS Computational Biology arti-
cles, and five full-text articles from Genome Bi-
ology for database and software name mentions
which were randomly selected from the PubMed
Central (Roberts, 2001) open-access subset. The
annotations were performed by a PhD student with
background in bioinformatics and text-mining. Ta-
ble 1 gives an overview of the annotated corpus.
There were 224 lexically unique resources men-
tioned 1,319 times, with an average of 44 resource
mentions per document. The document with the
most mentions had 227 resource mentions within
it. Finally, the vast majority of mentions are from a
small set of names (52% of resource names are only
mentioned once).

The inter-annotator agreement (IAA) (Kim and
Tsujii, 2006) for annotation of database and soft-
ware names was calculated from five full-text arti-
cles randomly selected from the gold standard cor-
pus, which were annotated by another PhD student

3https://en.wikipedia.org/wiki/Software



Total Number of Documents 30

Total Database and Software Mentions 1319
Total Unique Resource Mentions 224
Percentage of Database Mentions 36%
Percentage of Unique DB Mentions 26%
Average Mentions per Document 44.0

Average Unique Mentions per Document 8.2
Max Mentions in a Single Document 227
Max Unique Mentions in a Document 33
Resources with only a Single Mention 117

Table 1: Statistics describing the manually annotated
“gold standard” corpus.

with bioinformatics and text-mining background.
With lenient agreement (annotation offsets overlap),
we calculated a F-score of 86% (93%/80% preci-
sion/recall), showing that an adequate level of agree-
ment between two annotators can be achieved de-
spite the potential difficulties of this task. As ex-
pected, a decrease in IAA is observed if strict agree-
ment (offsets must exactly match) is used instead
(every score drops by 6%).

We have then manually analysed the mentions of
database and software names for their length, lexical
composition and structural patterns, variability and
ambiguity (see Results and Discussion).

To assess the complexity of automated identifi-
cation of database and software mentions, we used
of a baseline text-mining pipeline consisting of a
tokeniser, sentence splitter, part-of-speech tagger
and gazetteer from GATE’s ANNIE (Cunningham
et al., 15 April 2011). The gazetteer is based
on a dictionary of database and software names,
which was compiled from several existing sources
(see Table 2). Some well-known acronyms and
spelling/orthographic variants have also been added,
resulting in 4,871 resources with 5,302 variants (of
which, there were 4,879 unique name variants). Dic-
tionary matching was performed by LINNAEUS
(Gerner et al., 2010) and standard text-mining per-
formance statistics (precision, recall, F-score) were
used for evaluation.

3 Results and Discussion

Database and Software Name Composition.
The longest database/software names in the anno-

tated corpus contained five tokens (e.g. Gene Ex-
pression Profile Analysis Suite, National Microbial
Pathogen Database Resource). However, there are
examples in the dictionary containing more than 10
tokens (e.g. Prediction of Protein Sorting Signals
and Localisation Sites in Amino Acid Sequences ).

As an initial strctural analysis, we collected all the
part-of-speech tags assigned to each unique database
and software name in our annotated corpus. These
were then grouped to profile the structure of re-
source names (Table 3).

We have identified a total of 228 patterns in the
annotated corpus. The majority (82%) of database
and software names are comprised of either one, two
or three singular proper nouns (NNP). An additional
6% are comprised of a single common noun (NN,
e.g. affy). A roughly equivalent number contain dig-
its (CD, e.g. S4, t2prhd). A few contain adjectives
(JJ, e.g. internal transcribed spacer 2) or prepo-
sitions/subordinating conjunctions (IN, e.g. Struc-
tural Classification Of Proteins). Finally, in three
cases (BLASTed, SHAKE, dot), a mention of soft-
ware was tagged as a verb form (VB and VBP). This
is also the reason why there are more patterns (228)
than mentions (224). The analysis shows that there
is some variety in resource naming and recognition
of simple noun phrases alone may not be sufficient.

Variability of Resource Names. We note that the
variability of resource names at the dictionary level
is 1.09 (5,302 variants over 4,871 resources). For the
corpus analysis, we manually grouped names that
were referring to the same resource in order to anal-
yse name variability. Of the 224 unique names, 45
were variants of the same tool/database, leaving 179
unique resources. These were either acronyms, mis-
spellings or had alternative orthographics to other
mentions. In total, 141 resources had only a single
name variant within the corpus (79%). 17% of re-
sources had two variants, and the final 4% had three
variants. Of the 45 name variants, 15 were acronyms
and all of those were defined in text (and so could be
automatically expanded with the right tools (Torii et
al., 2007)).

Ambiguity of Resource Names. We note that the
ambiguity of resource names at the dictionary level
is not high (4,879 unique variants for 4,871 re-
sources). Still, ambiguous resource names exist, e.g.



Type Entries URL

DB 196 databases.biomedcentral.com

SwW 261 www.bioinformatik.de

PK 597 www.bioconductor.org

SW 1038 www.bioinformatics.ca/links_directory/

SW 365 evolution.genetics.washington.edu/phylip/software.html
DB 140 www.ebi.ac.uk/miriam/main/

DB 1337 www.oxfordjournals.org/nar/database/a/

SW 135 www.netsci.org/Resources/Software/Bioinform/index.html
SW 37 www.bioinf.manchester.ac.uk/recombination/programs.shtml
SwW 678 en.wikipedia.org/wiki/Wiki/<various>

- 87 Manually generated entries

Table 2: Database and software URLs from which the database and software name dictionary is comprised. DB =
databases; SW = software; PK = packages; data correct as of April 12th, 2011.

Pattern Count Freq.
NNP 155 68.0%
NNP NNP 20 8.8%
NN 13 5.7%
NNP NNP NNP 12 5.3%
NNP CD 7 3.1%
NNP CD . CD 4 1.8%
NNP NNP NNP NNP NNP 3 1.3%
NNP LS 2 0.9%
NNP NNP NNP NNP 2 0.9%
Other Patterns 10 4.4%

Table 3: Structure of database and software names. NNP
= proper noun, NN = singular noun, CD = cardinal num-
ber, LS = list item marker (number).

Network (a tool enabling network inference from
various biological datasets) and analysis (a pack-
age for DNA sequence analysis). We therefore anal-
ysed the dictionary of database and software names
to evaluate dictionary-level ambiguity when com-
pared to the entries in a full English words dic-
tionary derived from a publicly available list* and
to a known biomedical acronyms dictionary com-
piled from ADAM (Zhou et al., 2006), consisting
of 86,308 and 1,933 terms, respectively. A to-
tal of 37 names matched English words (e.g. cy-
cle, estrogen, graph, water) and 43 names fully
matched known acronyms (e.g. DIP, distal interpha-
langeal or Database of Interacting Proteins). Both

*http://wordlist.sourceforge.net/

comparisons were case-sensitive. The number of
matches increase to 405 and 54 respectively when
case-insensitive matching is used instead.

To evaluate the recognition-level ambiguity
within the annotated corpus, we also compared the
tagged database and software names to the English
words and acronym dictionary. This resulted in three
matches to the English dictionary (ACT, dot, R),
and one to the acronym dictionary (/PA) using case-
sensitive matching. This equates to roughly 2% of
the annotated names. This increases to 27 matches
(12%) if case-sensitive matching is used instead.

Dictionary Matching. Table 4 provides the stan-
dard text-mining performance statistics for the dic-
tionary matching approach against the gold standard
corpus. The F-scores of under 55% highlight the dif-
ficulty of this task, both in terms of matching known
ambiguous names (low precision), and from the dic-
tionary not being sufficiently comprehensive (low
recall). The most common false positives were cy-
cle, genomes (potential mentions of BioConductor
packages) and GO (which was frequently matched
within GO database identifiers, e.g., GO:0007089).
The most common false negatives were Tabasco,
MethMarker, xPedPhase and i Linker. In each case,
the name missed (numerous times) was the resource
being introduced in that paper. This shows that any
database and software NER must be able to capture
newly introduced resources to achieve high recall.



TP FP FN | P R F
729 633 590 | 54% 55% 54%
695 667 624 | 51% 53% 52%

Lenient
Strict

Table 4: True positive (TP), false positive (FP), false neg-
ative (FN), precision (P), recall (R) and F-score (F) for 30
full-text articles using dictionary look-up.

Type Contribution
Dictionary matches 55.3%

Heads and Hearst patterns  9.7%

Title appearances 0.6%
References and URLs 1.9%

Version information 1.2%
Noun/Verb associations 20.3%
Comparisons 5.8%
Remaining 5.2%

Table 5: Types of textual patterns and clues for identifica-
tion of database and software names. Tables 6-11 provide
examples of each class.

False negative database and software mentions.
We have further analysed the missed database and
software names (i.e., the names not in the dictionary)
for any common textual clues and patterns. Table
5 summaries different clue categories and their per-
centage contribution to overall recall. In total, using
all clues that we have recognised (see below), final
recall could be as high as 95%, though utilising all
of these pointers could have a detrimental resulting
effect on precision.

The first type of clue that seemed most discrim-
inatory was to associate potential names with head
terms, i.e. terms that are explicit designators of the
type of resource. In the most basic case, a resource
name could include a head term or be immediately
followed by one (see Table 6). Key head terms in-
cluded database, software, tool, program, simula-
tor, system, library and service. Additionally, ap-
plying standard Hearst patterns (Hearst, 1992) could
be used to extract new and unknown names from
enumerations that contain some known database and
software names (see Table 6). These patterns could
help increase total recall by up to 10%.

We note, however, that not all potential heads
are fully discriminatory (for example, module in
P and D modules refer to protein modules (doc-

the stochastic simulator Dizzy allows ...

The MethMarker software was ...

... tools: CLUSTALW, ..., and MUSCLE.

... programs such as Simlink, ..., and SimPed.

Table 6: Example clues and phrases appearing with spe-
cific heads or in Hearst patterns. Database and software
names are in italics, the associated clue is in bold.

ument: PMC1664705), rather than programming
ones). Due to the high number of module mentions
in that paper, considering module as an indicative
software head could have a detrimental impact on
precision.

We further explored a pattern within paper titles
where the papers were introducing a new resource
(Southan and Cameron, 2009). The title would name
the new database or software, and then follow it
by a brief description (see Table 7 for examples).
Seven of 30 papers in our corpus (over 20%) con-
tained such a pattern. Although this would provide
a limited improvement to recall on a mention level
(< 1%), it could significantly aid document level re-
call. In addition, it provides a way to discover new
tool names for inclusion in a dictionary with a high
discriminatory rate.

Another clue is that database and software men-
tions are frequently followed by either a reference
or a web URL (e.g., “Galaxy [18] and EpiGRAPH
[19]”). This was the main indicator used by ORe-
FiLl (Yamamoto and Takagi, 2007). We recognise,
however, that web URLSs and citations are not in text
only for resources and so this is far less reliable than
the previous options (e.g., could incorrectly capture
“The learning metrics principle [14, 15]”). We hy-
pothesise that restricting this type of capture to a pa-
per’s Methods section may reduce the potential im-
pact on precision.

Numerous database and software mentions also
contain or are accompanied by version information
(see Table 8). While version numbers can be un-
ambiguous (e.g. having v’ or ‘version’), they can
also be series of numbers, that are not discrimina-
tive enough (e.g. “AMD Athlon 1.8 GHz processor”
(a CPU), or “sites of Myc (0.22) and NF-kappaB
(0.103)” (genes)).



CoXpress: differential co-expression in gene expression data
TABASCO: A single molecule, base-pair resolved gene expression simulator
SimHap GUI: An intuitive graphical user interface for genetic association analysis

Table 7: Example phrases from Title appearances. Database and software names are in ifalics. Notice that in each
case, the name is given as the initial part of the paper’s full title (preceding the colon).

using dot v1.10 and Graphviz 1.13(v16).
CLUSTAL W version 1.83
Dynalign 4.5, and LocARNA 0.99

Table 8: Example versioning clues. Database and soft-
ware names are in italics, the associated clue is in bold.

The category with the highest potential contribu-
tion (over 20%) includes cases where some expres-
sion (could be a noun or a verb) in the sentence
(not next to the mention) gives an indication that
a database or software is being referred to. Such
clues can range from the more discriminatory like
website, screenshot and download, to medium ones
like RAM, implement, simulate and running time, to
weak ones such as run, generate, evaluate and ob-
tain (see Table 9 for examples). However, this type
is also the one with the highest degree of variabil-
ity as many other “things” can, for example, be run,
implemented or generated. Despite some of these
being relatively weak, we think that they have lim-
ited ambiguity at least within the field of bioinfor-
matics, even if this is not true in a different field.
To estimate the effect on precision that inclusion of
these clues may have, we compared the number of
sentences in the gold standard corpus with a spe-
cific clue from this category to the number of sen-
tences with both the clue and a database or software
name within our corpus. For example, 77% of sen-
tences contain both a resource name and matched a
mention of word website, 50% for RAM and 48%
matched both a name and the regular expression
“ran|run(ning|s) ?”. Regardless, there could
still be merit in these clues if used in combination
with each other rather than alone.

A number of clues can be inferred from sentences
that make some comparison between two or more
database and software names (see Table 10). Many
of these examples can be considered as extended
Hearst patterns (e.g., “like tooll, tool2 is ...”) but we

the SimHap GUI installation.
implemented within PedPhase
MethMarker therefore provides

A typical screenshot of MethMarker
Cofolga? has six free parameters
MethMarker’s user interface reflects
MethMarker can directly import
xPedPhase thus needs cubic time

Table 9: Example expressions that functionally indicate
database and software mentions. Database and software
names are in italics, the associated clue is in bold.

have analysed them separately for a couple of rea-
sons. In particular, there is an unusually high num-
ber of terms contained within this class in the gold
standard corpus: a vast majority of the examples
within this class (73%) all come from a single paper.
Following on from this, neither tool being compared
in that paper (most frequently i Linker with xPed-
Phase) was present in our dictionary. Thus, even if
the comparison pattern has been implemented, the
method would need at least to know about some of
the tools to infer others. As such, although we envis-
age potential in addressing this type of database and
software mention, we cannot extrapolate how much
use it could have due to our biased dataset sample.

Finally, there are a series of mentions (around
5%) without any clear clue, or with particularly am-
biguous ones (see Table 11 for examples). Potential
clues such as analyse, step and minimize seem too
generic within the bioinformatics field to be useful.
For example, the number of sentences within our
corpus that contained both the regular expression
“analyse (d|s) ?|analysis” and contained a
mention of a database or piece of software was only
about 20%.

Issues with Scope. There is not always a clear
distinction between database and software names,
methods, approaches, algorithms, programming lan-



the numbers of breakpoint sites by xPedPhase were equal to the numbers of breakpoints by i Linker.

xPedPhase did better than i Linker

Cofogla?2 with this cutoff PSVM gives a better false positive rate compared to RNAz
Foldalign was much slower than Cofolga?2 except for

Like Moleculizer, Tabasco dynamically generates

Table 10: Examples of comparisons between database and software names. Database and software names are in italics,

the associated clue is in bold.

Additionally, i Linker has an error correction step that detects unlikely crossover events.

In addition, Tabasco should be a good base to further study interactions on DNA

PSPE is not only able to use one of many common models of nucleotide substitution

The results show that LibSELDI tends to have a considerable advantage in the low FDR region
The structure of Tabasco confers at least four advantages.

Table 11: Example phrases with no clear or discriminative clues. Database and software names are in italics.

guages, database records/identifiers, and file for-
mats. The problem occurs because authors often in-
troduce a novel algorithm and associated implemen-
tation (e.g. as a service or a stand-alone applica-
tion), but frequently refer to their contribution only
as an algorithm (or method), rather than software.
As such, although they are talking about their algo-
rithm throughout the paper, it could be argued that
they are referring to their software implementation,
especially when talking about benchmark improve-
ments in results (since the algorithm must have been
implemented by this point). The fuzzy boundary be-
tween them is going to be a challenge for any fo-
cused automated system to overcome.

4 Conclusion

In this paper we present an exploration of variabil-
ity and ambiguity of database and software mentions
in the bioinformatics and computational biology lit-
erature. Our results suggest that database and soft-
ware NER 1is a non-trivial task that requires more
than just a dictionary matching approach. It ap-
pears to share many of these difficulties with gene
name recognition. Due to bioinformatics’ focus on
resource creation, a dictionary could never be suffi-
ciently comprehensive, making resource recognition
potentially as hard as gene recognition (in contrast to
species recognition, which is a relatively stable do-
main). Example names such as Network and anal-
ysis provide ambiguity and verbalised references to

software such as BLASTed provide issues of variabil-
ity that need to be overcome.

Our analyses also provided a series of clues that
could be picked up by text-mining techniques, which
we are currently in the process of developing. As
many of these clues are ambiguous on their own, our
approach is to combine various evidence (e.g. using
voting and threshold) in order to capture database
and software names accurately.

We provide the annotated corpus of 30 full-
text articles and manually compiled dictionary
at: http://sourceforge.net/projects/
bionerds/.
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