Abstract
Background Freehand three-dimensional ultrasound imaging (3D-US) is increasingly used in image-guided surgery. During image acquisition, a set of B-scans is acquired that is distributed in a non-parallel manner over the area of interest. Reconstructing these images into a regular array allows 3D visualization. However, the reconstruction process may introduce artefacts and may therefore reduce image quality. The aim of the study is to compare different algorithms with respect to image quality and diagnostic value for image guidance in neurosurgery. Methods 3D-US data sets were acquired during surgery of various intracerebral lesions using an integrated ultrasound-navigation device. They were stored for post-hoc evaluation. Five different reconstruction algorithms, a standard multiplanar reconstruction with interpolation (MPR), a pixel nearest neighbour method (PNN), a voxel nearest neighbour method (VNN) and two voxel based distance-weighted algorithms (VNN2 and DW) were tested with respect to image quality and artefact formation. The capability of the algorithm to fill gaps within the sample volume was investigated and a clinical evaluation with respect to the diagnostic value of the reconstructed images was performed. Results MPR was significantly worse than the other algorithms in filling gaps. In an image subtraction test, VNN2 and DW reliably reconstructed images even if large amounts of data were missing. However, the quality of the reconstruction improved, if data acquisition was performed in a structured manner. When evaluating the diagnostic value of reconstructed axial, sagittal and coronal views, VNN2 and DW were judged to be significantly better than MPR and VNN. Conclusion VNN2 and DW could be identified as robust algorithms that generate reconstructed US images with a high diagnostic value. These algorithms improve the utility and reliability of 3D-US imaging during intraoperative navigation.