Header

UZH-Logo

Maintenance Infos

Designed Ankyrin Repeat Proteins (DARPins) as Novel Isoform-Specific Intracellular Inhibitors of c-Jun N-Terminal Kinases


Parizek, Petra; Kummer, Lutz; Rube, Peter; Prinz, Anke; Herberg, Friedrich W; Plückthun, Andreas (2012). Designed Ankyrin Repeat Proteins (DARPins) as Novel Isoform-Specific Intracellular Inhibitors of c-Jun N-Terminal Kinases. ACS Chemical Biology, 7(8):1356-1366.

Abstract

The c-Jun N-terminal kinases (JNKs) are involved in many biological processes such as proliferation, differentiation, apoptosis, and inflammation and occur in highly similar isoforms in eukaryotic cells. Isoform-specific functions and diseases have been reported for individual JNK isoforms mainly from gene-knockout studies in mice. There is, however, a high demand for intracellular inhibitors with high selectivity to improve the understanding of isoform-specific mechanisms and for use as therapeutic tools. The commonly used JNK inhibitors are based on small molecules or peptides that often target the conserved ATP binding site or docking sites and thus show only moderate selectivity. To target novel binding epitopes, we used designed ankyrin repeat proteins (DARPins) to generate alternative intracellular JNK inhibitors that discriminate two very similar isoforms, JNK1 and JNK2. DARPins are small binding proteins that are well expressed, stable, and cysteine-free, which makes them ideal candidates for applications in the reducing intracellular environment. We performed ribosome display selections against JNK1alpha1 and JNK2alpha1 using highly diverse combinatorial libraries of DARPins. The selected binders specifically recognize either JNK1 or JNK2 or both isoforms in vitro and in mammalian cells. All analyzed DARPins show affinities in the low nanomolar range and isoform-specific inhibition of JNK activation in vitro at physiological ATP concentrations. Importantly, DARPins that selectively inhibit JNK activation in human cells were also identified. These results emphasize the great potential of DARPins as a novel class of highly specific intracellular inhibitors of distinct enzyme isoforms for use in biological studies and as possible therapeutic leads.

Abstract

The c-Jun N-terminal kinases (JNKs) are involved in many biological processes such as proliferation, differentiation, apoptosis, and inflammation and occur in highly similar isoforms in eukaryotic cells. Isoform-specific functions and diseases have been reported for individual JNK isoforms mainly from gene-knockout studies in mice. There is, however, a high demand for intracellular inhibitors with high selectivity to improve the understanding of isoform-specific mechanisms and for use as therapeutic tools. The commonly used JNK inhibitors are based on small molecules or peptides that often target the conserved ATP binding site or docking sites and thus show only moderate selectivity. To target novel binding epitopes, we used designed ankyrin repeat proteins (DARPins) to generate alternative intracellular JNK inhibitors that discriminate two very similar isoforms, JNK1 and JNK2. DARPins are small binding proteins that are well expressed, stable, and cysteine-free, which makes them ideal candidates for applications in the reducing intracellular environment. We performed ribosome display selections against JNK1alpha1 and JNK2alpha1 using highly diverse combinatorial libraries of DARPins. The selected binders specifically recognize either JNK1 or JNK2 or both isoforms in vitro and in mammalian cells. All analyzed DARPins show affinities in the low nanomolar range and isoform-specific inhibition of JNK activation in vitro at physiological ATP concentrations. Importantly, DARPins that selectively inhibit JNK activation in human cells were also identified. These results emphasize the great potential of DARPins as a novel class of highly specific intracellular inhibitors of distinct enzyme isoforms for use in biological studies and as possible therapeutic leads.

Statistics

Citations

Dimensions.ai Metrics
32 citations in Web of Science®
35 citations in Scopus®
57 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 11 Oct 2012
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2012
Deposited On:11 Oct 2012 09:47
Last Modified:16 Feb 2018 23:54
Publisher:American Chemical Society
ISSN:1554-8929
OA Status:Closed
Publisher DOI:https://doi.org/10.1021/cb3001167

Download