Post-Protein-Binding Reactivity and Modifications of the fac-Re(CO)(3)](+)
Core

Zobi, Fabio; Spingler, Bernhard

Abstract: The reactivity of the Re(CO)(3)(H2O)(2)](+) complex coordinated to the His15 residue of HEW lysozyme is described. In the fully metalated protein (Lys-1), the Re ion retains its reactivity only toward selected ligands, while others induce a ligand-mediated demetalation of the enzyme. It is further shown that some of the complexes that may be “engineered” on the lysozyme do not react with the free protein even if present in solution in excess. The formation of stable metal adducts starting from Lys-1 was confirmed by X-ray crystallography.

DOI: https://doi.org/10.1021/ic2023314

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-65334
Journal Article
Accepted Version

Originally published at:
Zobi, Fabio; Spingler, Bernhard (2012). Post-Protein-Binding Reactivity and Modifications of the fac-Re(CO)(3)](+)
DOI: https://doi.org/10.1021/ic2023314
Post Protein-Binding Reactivity and Modifications of the fac-[Re(CO)₃]⁺ Core.

Fabio Zobi* and Bernhard Spingler

Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.

ABSTRACT: The reactivity of the [Re(CO)₃(H₂O)₂]⁺ complex coordinated to the His15 residue of HEW lysozyme is described. In the fully metallated protein (Lys-1), the Re ion retains its reactivity only towards selected ligands while others induce a ligand-mediated de-metallation of the enzyme. It is further shown that some of the complexes which may be “engineered” on the lysozyme do not react with the free protein even if present in solution in excess. The formation of stable metal adducts starting from Lys-1 was confirmed by X-ray crystallography.

Chemical hybridization of proteins with non-native metal fragments constitutes an active field of research. Some groups have brilliantly directed their efforts towards the development of artificial enzymes while others have exploited the exogenous metal complexes in the study of long-range electron transfer reactions or photo-induced relaxation processes. In the case of metal ions which find applications in medicinal chemistry, the interaction of polypeptides with metal drugs is mainly investigated in order to elucidate the fate of the drug within the blood stream or in cellular compartments.

Several studies have now made available structural information of the interactions of, mainly, Pt and Ru-based anticancer agents with cellular proteins. In contrast, the reactivity of the protein-bound complexes has received far less attention. It is of interest, in our opinion, not only to determine the location, the structural modifications, the strength of binding and the reversibility of protein-metal complex interactions, but also to understand how the nature of the chiral protein environment might influence the chemistry of the metal complex.

This latter question has been explored only marginally. However, possible post protein-binding reactions of e.g. metallo-drugs, might play an important role in determining the biochemical basis of the systemic toxicity of the drugs or play a role in their therapeutic effects. Elucidating the chemistry of protein-bound metal species might also offer an elegant alternative to the seleno-methionine dependant multiwavelength anomalous diffraction (MAD) method for solving the so-called “phase-problem”.

Herein we show (see Figure 1) that the chemistry of the lysozyme-bound fac-[Re(CO)₃]⁺ core (Lys-1) is affected by the nature of the chiral protein environment when compared to the solvated metal ion (i.e. fac-[Re(CO)₃(OH₂)]⁺ (1)). The Re ion on the fully metallated enzyme Lys-1 retains its reactivity towards selected mono and bidentate ligands while molecules bearing primary amines induced de-metallation of Lys-1.

Figure 1. Reaction scheme leading to the species described in this contribution. (a) complete metallation of HEW lysozyme (Lys) with the fac-[Re(CO)₃(OH₂)]⁺ complex (1). (b), (c) and (d) derivatization of Lys-1 with pyridine-2-carboxylic acid (pa), L-serine and imidazole yielding Lys-3, Lys-4 and Lys-2 respectively. (e) unsuccessful synthesis of Lys-3 via reaction of Lys-1 with the fac-[Re(CO)₃(pa)(OH₂)] complex. (f) reaction of Lys-1 with pyridine showed no evidence of ligand exchange at the metal core.

The x-ray structure of the lysozyme-bound [Re(CO)₃(H₂O)₂]⁺ complex (metal ion occupancy modeled to 60%) was recently communicated by Ziegler and co-workers. We found that complete metallation of the enzyme could be attained by allowing Lys to react with an excess of 1 (>20eq.) for 7 days at room tempera-
tured. Mass spectrometry (Supporting Information (SI)) clearly showed the formation of the corresponding adduct (Lys-1) in quantitative yield. Chromatographic purification of Lys-1 allowed isolating the protein in ca. 80% yield with no apparent loss of the metal ion (typically on a 50 mg scale, SI). CD studies and enzymatic assays on the rate of lysis of Micrococcus lysodeikticus showed that the chromatographic purification did not affect enzymatic activity or folding of Lys-1 (SI). The metallated protein thus obtained could also be crystallized but we found no significant differences with the reported structure with the exception that Re occupancy could be modelled to a value >80%.

500-MHz COSY spectrum of non-exchanged Lys and Lys-1 are compared in Figure 2. Coordination of I to His15 induced a downfield shift of the resonances of the residue which was lost under the presaturated water signal (SI). The most significant resonance shift was noticed for Arg14 (labelled R14 in Figure 2), an observation which may be rationalized by comparing the x-ray structure of Lys-1 with the NMR solution structure of the free enzyme (Figure 2). The resonance changes of Arg14 are consistent with the rearrangement of the residue required to lift the steric hindrance at the binding site. Overall COSY cross-peak signals of Lys-1 retained the same pattern as the one observed for the free lysozyme (SI).

The reactivity of Lys-1 was studied in water by exposing the metalloprotein to different mono and bidentate ligands. Preliminary studies of these interactions were always followed by LC-MS. Under our experimental conditions, MS analysis of the Lys- and Lys-1-derived species always showed a distinct pattern of signals (typically 4) corresponding to the +8 to the +11 ions of the enzymes (SI). Changes in the position of the signal patterns offered an immediate indication of the type of interactions which resulted from the reactions of Lys-1 (SI).

Reaction of Lys-1 with imidazole (im, 10 eq. 12h, RT) gave the corresponding fac-[Re(CO)3(His15)(im)(OH2)]+ adduct (Lys-2) in good yield. The coordination of a second imidazole was never observed. The X-ray structure of Lys-2 is shown in Figure 3 (vide infra). Under similar conditions, no reaction was observed when Lys-1 was dissolved into an aqueous solution of pyridine (py). On the other hand, reactions of the solvated metal ion I with im gave a mixture of products (i.e. mono-, bis- and tris-substituted complexes), while with py the well defined fac-[Re(CO)3(py)(OH2)]+ complex.

The fundamental reasons underlying these differences were not clear at this point. We speculated that hydrogen-bonding interactions between the incoming ligands and the amino acid residues in close proximity to the rhenium binding site may play an important role in determining the reactivity of the metal ion. To test this hypothesis, Lys-1 was reacted with pyridine-2-carboxylic acid (pa) and 2-methylamine-pyridine (pn) under conditions described above. Reaction of Lys-1 with pa gave the corresponding fac-[Re(CO)3(His15)(pa)]+ adduct (Lys-3) (SI) but when exposed to an aqueous solution of pn, Lys-1 was readily de-metallated resulting in a mixture of free Lys and the fac-[Re(CO)3(pn)(OH2)]+ complex. This type of ligand-mediated de-metallation of Lys-1 was further observed in the reactions of the metalloprotein with other bidentate ligands bearing primary amines (e.g. ethylenediamine). Crystalization of samples of Lys-3, obtained after chromatographic purification, was attempted under a wide variety of conditions, but no diffraction crystals could be obtained.

In order to get insights into the possible interactions of Lys-1 with more biologically relevant molecules, the metalloprotein was also reacted with amino acids. We focused our attention on L-serine (L-ser). Under conditions similar to those described for the synthesis of the im conjugate, Lys-1 reacted with L-ser to give the corresponding fac-[Re(CO)3(His15)(L-ser)]+ adduct (Lys-4) in ca. 80% yield. Partial loss of the metal fragment was observed during the reaction but no further de-metallation was detected after chromatographic purification.

Crystals of Lys-2 and Lys-4 suitable for X-ray diffraction analysis were obtained by the hanging-drop method (SI). Figure 3 show the overall structure of Lys-2 and a detailed view of the metal binding site of Lys-4. A similar detailed view of the binding site of Lys-2 is given in SI. It should be mentioned that in the case of Lys-2, the difference map contoured at the metal binding site does not entirely show the imidazole ring. However, MS analysis of the single crystal employed in the X-ray diffraction analysis unequivocally points to the presence of imidazole in the rhenium coordination sphere (SI)

Lys-4 crystallized in a typical tetragonal lysozyme cell (space group P43212, PDB accession code 3QNG). Two molecules of Lys-2 were found in the asymmetric unit of the orthorhombic cell (space group P212121, PDB accession code 3QEB). The structures were solved by molecular replacement using a Lys model (PDB entry 1EE) and the restraints for the rhenium complexes were taken from the corresponding small molecule structures. In both cases, the rhenium complexes were refined with 80% occupancy. The crystals of Lys-2 and Lys-4 were diffracting till 1.55 and 1.49 Å respectively (SI).

It is interesting to point out that in solid state structure of Lys-4 a single fac-[Re(CO)3(His15)(L-ser)] diastereomer is observed. In the structure, the OH group of L-ser is H-bonded to the threonine residue 89 (SI). It is possible that one of the two diastereomeric forms of Lys-4 was selectively crystallized or alternatively the hydrogen-bonding interaction is responsible for the binding specifici-
ty of L-ser. We tend to favour this second hypothesis as diastereomerically pure samples of \(\text{fac-}[\text{Re(CO)}_3(\text{L-ser})(\text{X})] \) (where \(\text{X} = \text{im type ligand} \)) are known to rapidly epimerize at the rhenum center in aqueous solutions.

In summary, a study of the post protein-binding reactivity of the lysozyme-bound \(\text{fac-}[\text{Re(CO)}_3]^+ \) core was presented. The study corroborated the assumption that the nature of the chiral protein environment might affect the chemistry of a metal complex on a protein surface. Our results led us to hypothesize that hydrogen-bonding interactions between the incoming ligands and the amino acid residues in close proximity to the metal-binding site may play an important role in determining the reactivity and the specificity of binding of the metal ion.

Corresponding Author

* fzobi@aci.uzh.ch

REFERENCES

Figure 3. Top: overall structure of Lys-2 in the asymmetric unit (anomalous electron density contoured at 4.0 σ). Bottom: detailed view of the metal binding site of Lys-4 (difference electron density map contoured at 2.7 σ, SI). The pictures were prepared using the PyMol software.

ACKNOWLEDGMENT

The Swiss National Science Foundation (Ambizione PZ00P2_121989) is acknowledged for financial support. We thank Dr. Claudia Temerini for scientific discussions and the SLS for providing beamtime.

The reactivity of the \[\text{Re(CO)}_3(\text{H}_2\text{O})_2^+\] complex coordinated to the His15 residue of HEW lysozyme is described. It is shown that the chemistry of the enzyme-bound fac-[\text{Re(CO)}_3]^{2+} core (**Lys-1**) is affected by the nature of the chiral protein environment if compared to the solvated metal ion. In the fully metallated protein, the Re ion retains its reactivity only towards selected ligands while others induce a ligand-mediated de-metallation of the enzyme. It is further shown that some of the complexes which may be "engineered" on the lysozyme do not react with the free protein even if present in solution in excess. The formation of stable metal adducts starting from **Lys-1** was confirmed by X-ray crystallography.