Header

UZH-Logo

Maintenance Infos

Inferring snowpack ripening and melt-out from distributed measurements of near-surface ground temperatures


Schmid, M O; Gubler, Stefanie; Fiddes, J; Gruber, Stephan (2012). Inferring snowpack ripening and melt-out from distributed measurements of near-surface ground temperatures. The Cryosphere, 6(5):1127-1139.

Abstract

Seasonal snow cover and its melt regime are heterogeneous both in time and space. Describing and modelling this variability is important because it affects diverse phenomena such as runoff, ground temperatures or slope movements. This study presents the derivation of melting characteristics based on spatial clusters of ground surface temperature (GST) measurements. Results are based on data from Switzerland where ground surface temperatures were measured with miniature loggers (iButtons) at 40 locations referred to as footprints. At each footprint, up to ten iButtons have been distributed randomly over an area of 10 m × 10 m, placed a few cm below the ground surface. Footprints span elevations of 2100–3300 m a.s.l. and slope angles of 0–55◦, as well as diverse slope expositions and types of surface cover and ground material. Based on two years of temperature data, the basal ripening date and the melt-out date are determined for each iButton, aggregated to the footprint level and further analysed. The melt-out date could be derived for nearly all iButtons; the ripening date could be extracted for only approximately half of them because its detection based on GST requires ground freezing below the snowpack. The variability within a footprint is often considerable and one to three weeks difference between melting or ripening of the points in one footprint is not uncommon. The correlation of mean annual ground surface temperatures, ripening date and melt-out date is moderate, suggesting that these metrics are useful for model evaluation.

Abstract

Seasonal snow cover and its melt regime are heterogeneous both in time and space. Describing and modelling this variability is important because it affects diverse phenomena such as runoff, ground temperatures or slope movements. This study presents the derivation of melting characteristics based on spatial clusters of ground surface temperature (GST) measurements. Results are based on data from Switzerland where ground surface temperatures were measured with miniature loggers (iButtons) at 40 locations referred to as footprints. At each footprint, up to ten iButtons have been distributed randomly over an area of 10 m × 10 m, placed a few cm below the ground surface. Footprints span elevations of 2100–3300 m a.s.l. and slope angles of 0–55◦, as well as diverse slope expositions and types of surface cover and ground material. Based on two years of temperature data, the basal ripening date and the melt-out date are determined for each iButton, aggregated to the footprint level and further analysed. The melt-out date could be derived for nearly all iButtons; the ripening date could be extracted for only approximately half of them because its detection based on GST requires ground freezing below the snowpack. The variability within a footprint is often considerable and one to three weeks difference between melting or ripening of the points in one footprint is not uncommon. The correlation of mean annual ground surface temperatures, ripening date and melt-out date is moderate, suggesting that these metrics are useful for model evaluation.

Statistics

Citations

Dimensions.ai Metrics
26 citations in Web of Science®
27 citations in Scopus®
29 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

102 downloads since deposited on 09 Nov 2012
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Uncontrolled Keywords:Earth-Surface Processes, Water Science and Technology
Language:English
Date:2012
Deposited On:09 Nov 2012 10:37
Last Modified:18 Aug 2018 06:19
Publisher:Copernicus Publications
ISSN:1994-0416
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.5194/tc-6-1127-2012

Download

Download PDF  'Inferring snowpack ripening and melt-out from distributed measurements of near-surface ground temperatures'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 694kB
View at publisher