Abstract
Personal and ubiquitous healthcare applications offer new opportunities to prevent long-term health dam- age due to increased mental workload by continuously monitoring physiological signs related to prolonged high workload and providing just-in-time feedback. In order to achieve a quantification of mental load, different load levels that occur during a workday have to be discrimi- nated. In this work, we present how mental workload levels in everyday life scenarios can be discriminated with data from a mobile ECG logger by incorporating individual calibration measures. We present an experiment design to induce three different levels of mental workload in cali- bration sessions and to monitor mental workload levels in everyday life scenarios of seven healthy male subjects. Besides the recording of ECG data, we collect subjective ratings of the perceived workload with the NASA Task Load Index (TLX), whereas objective measures are asses- sed by collecting salivary cortisol. According to the sub- jective ratings, we show that all participants perceived the induced load levels as intended from the experiment design. The heart rate variability (HRV) features under investigation can be classified into two distinct groups. Features in the first group, representing markers associated with parasympathetic nervous system activity, show a decrease in their values with increased workload. Features in the second group, representing markers associated with sympathetic nervous system activity or predominance, show an increase in their values with increased workload. We employ multiple regression analysis to model the relationship between relevant HRV features and the