Abstract
This report describes the piloting mechanisms employed by honey bees during their final approach to a goal. Conceptually applying a bottom-up approach, we systematically varied the position, number and appearance landmarks associated with a rewarded target location within a large, homogenous flight tent. The flight behavior measured under various conditions is well explained with visuo-motor control loops that link perceived landmarks with appropriate turning responses. This view is consistent with the requirement of prolonged reinforcement learning for efficient goal navigation. A simple model is able to provide a comprehensive explanation for diverse flight patterns that range from convoluted searching behavior to highly idiosyncratic approaches, depending on the experimental context. Our results challenge the prevalent notion that honey bees employ image matching for visual guidance toward a goal site. Basic visuo-motor control loops may better meet the high demands for robust and fast flight control, which could serve as a powerful bio-mimetic design principle for micro-robotic aircraft.