Header

UZH-Logo

Maintenance Infos

Ant navigation: one-way routes rather than maps


Wehner, Rüdiger; Boyer, Martin; Loertscher, Florian; Sommer, Stefan; Menzi, Ursula (2006). Ant navigation: one-way routes rather than maps. Current Biology, 16(1):75-79.

Abstract

In recent years, there has been an upsurge of interest and debate about whether social insects-central-place foragers such as bees and ants-acquire and use cognitive maps, which enable the animal to steer novel courses between familiar sites . Especially in honey bees, it has been claimed that these insects indeed possess such "general landscape memories" and use them in a "map-like" way . Here, we address this question in Australian desert ants, Melophorus bagoti, which forage within cluttered environments full of nearby and more distant landmarks. Within these environments, the ants establish landmark-based idiosyncratic routes from the nest to their feeding sites and select different one-way routes for their outbound and inbound journeys. Various types of displacement experiments show that inbound ants when hitting their inbound routes at any particular place immediately channel in and follow these routes until they reach the nest, but that they behave as though lost when hitting their habitual outbound routes. Hence, familiar landmarks are not decoupled from the context within which they have been acquired and are not knitted together in a more general and potentially map-like way. They instruct the ants when to do what rather than provide them with map-like information about their position in space.

Abstract

In recent years, there has been an upsurge of interest and debate about whether social insects-central-place foragers such as bees and ants-acquire and use cognitive maps, which enable the animal to steer novel courses between familiar sites . Especially in honey bees, it has been claimed that these insects indeed possess such "general landscape memories" and use them in a "map-like" way . Here, we address this question in Australian desert ants, Melophorus bagoti, which forage within cluttered environments full of nearby and more distant landmarks. Within these environments, the ants establish landmark-based idiosyncratic routes from the nest to their feeding sites and select different one-way routes for their outbound and inbound journeys. Various types of displacement experiments show that inbound ants when hitting their inbound routes at any particular place immediately channel in and follow these routes until they reach the nest, but that they behave as though lost when hitting their habitual outbound routes. Hence, familiar landmarks are not decoupled from the context within which they have been acquired and are not knitted together in a more general and potentially map-like way. They instruct the ants when to do what rather than provide them with map-like information about their position in space.

Statistics

Citations

Dimensions.ai Metrics
116 citations in Web of Science®
135 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

282 downloads since deposited on 11 Feb 2008
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Zoology (former)
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > General Agricultural and Biological Sciences
Language:English
Date:10 January 2006
Deposited On:11 Feb 2008 12:17
Last Modified:01 Oct 2022 07:10
Publisher:Elsevier
ISSN:0960-9822
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1016/j.cub.2005.11.035
PubMed ID:16401425