Header

UZH-Logo

Maintenance Infos

Translating preclinical approaches into human application


Dietz, Volker; Curt, Armin (2012). Translating preclinical approaches into human application. Handbook of Clinical Neurology, 109:399-409.

Abstract

In recent decades, several novel approaches of spinal cord repair have revealed promising findings in animal models. However, for a successful translation of these into a clinical trial in humans the specific conditions pertaining to human spinal cord injuries (SCI) have to be appreciated. Firstly, transection of the spinal cord is commonly applied in animal models, whereas spinal cord contusion is the predominant type of injury in humans, and generally leads to more extensive injury in two to three spinal cord segments. Secondly, the quadrupedal organization of locomotion in animals and the more complex autonomic functions in humans challenge the translation of animal behavior into recovery from human SCI. Thirdly, so far, no adequate animal model has been developed to resemble spastic movement disorder in human SCI. Fourthly, the extensive damage to spinal motor neurons and nerve roots in human cervical and thoracolumbar in spine trauma is but little addressed in current translational studies. This damage has direct implications for rehabilitation and repair strategies. Fifthly, there is increasing evidence for a neuronal dysfunction below the level of the lesion in chronic complete SCI. The relevance of this dysfunction for a regeneration-inducing treatment needs to be investigated. Lastly, an approach to facilitate an appropriate reconnection of regenerating tract fibers by functional training in the postacute stage has yet to be confirmed.

Abstract

In recent decades, several novel approaches of spinal cord repair have revealed promising findings in animal models. However, for a successful translation of these into a clinical trial in humans the specific conditions pertaining to human spinal cord injuries (SCI) have to be appreciated. Firstly, transection of the spinal cord is commonly applied in animal models, whereas spinal cord contusion is the predominant type of injury in humans, and generally leads to more extensive injury in two to three spinal cord segments. Secondly, the quadrupedal organization of locomotion in animals and the more complex autonomic functions in humans challenge the translation of animal behavior into recovery from human SCI. Thirdly, so far, no adequate animal model has been developed to resemble spastic movement disorder in human SCI. Fourthly, the extensive damage to spinal motor neurons and nerve roots in human cervical and thoracolumbar in spine trauma is but little addressed in current translational studies. This damage has direct implications for rehabilitation and repair strategies. Fifthly, there is increasing evidence for a neuronal dysfunction below the level of the lesion in chronic complete SCI. The relevance of this dysfunction for a regeneration-inducing treatment needs to be investigated. Lastly, an approach to facilitate an appropriate reconnection of regenerating tract fibers by functional training in the postacute stage has yet to be confirmed.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Neurology
Health Sciences > Neurology (clinical)
Language:English
Date:2012
Deposited On:19 Dec 2012 15:29
Last Modified:23 Jan 2022 22:59
Publisher:Elsevier
ISSN:0072-9752
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/B978-0-444-52137-8.00025-5
PubMed ID:23098727
Full text not available from this repository.