Header

UZH-Logo

Maintenance Infos

The first complete inventory of the local glaciers and ice caps on Greenland


Rastner, Philipp; Bolch, Tobias; Mölg, Nico; Machguth, Horst; Le Bris, Raymond; Paul, Frank (2012). The first complete inventory of the local glaciers and ice caps on Greenland. The Cryosphere, 6(6):1483-1495.

Abstract

Glacier inventories provide essential baseline information for the determination of water resources, glacier specific changes in area and volume, climate change impacts as well as past, potential and future contribution of glaciers to sea-level rise. Although Greenland is heavily glacierised and thus highly relevant for all of the above points, a complete inventory of its glaciers was not available so far. Here we present the results and details of a new and complete inventory that has been compiled from more than 70 Landsat scenes (mostly acquired between 1999 and 2002) using semiautomated glacier mapping techniques. A digital elevation model (DEM) was used to derive drainage divides from watershed analysis and topographic attributes for each glacier entity. To serve the needs of different user communities, we assigned to each glacier one of three connectivity levels with the ice sheet (CL0, CL1, CL2; i.e. no, weak, and strong connection) to clearly, but still flexibly, distinguish the local glaciers and ice caps (GIC) from the ice sheet and its outlet glaciers. In total, we mapped ⇠ 20 300 glaciers larger than 0.05 km2 (of which ⇠ 900 are marine terminating), covering an area of 130 076 ± 4032 km2, or 89 720 ± 2781 km2 without the CL2 GIC. The latter value is about 50 % higher than the mean value of more recent previous estimates. Glaciers smaller than 0.5 km2 contribute only 1.5 % to the total area but more than 50 % (11 000) to the total number. In contrast, the 25 largest GIC (> 500 km2) contribute 28 % to the total area, but only 0.1 % to the total number. The mean elevation of the GIC is 1700 m in the eastern sector and around 1000 m otherwise. The median elevation increases with distance from the coast, but has only a weak dependence on mean glacier aspect.

Abstract

Glacier inventories provide essential baseline information for the determination of water resources, glacier specific changes in area and volume, climate change impacts as well as past, potential and future contribution of glaciers to sea-level rise. Although Greenland is heavily glacierised and thus highly relevant for all of the above points, a complete inventory of its glaciers was not available so far. Here we present the results and details of a new and complete inventory that has been compiled from more than 70 Landsat scenes (mostly acquired between 1999 and 2002) using semiautomated glacier mapping techniques. A digital elevation model (DEM) was used to derive drainage divides from watershed analysis and topographic attributes for each glacier entity. To serve the needs of different user communities, we assigned to each glacier one of three connectivity levels with the ice sheet (CL0, CL1, CL2; i.e. no, weak, and strong connection) to clearly, but still flexibly, distinguish the local glaciers and ice caps (GIC) from the ice sheet and its outlet glaciers. In total, we mapped ⇠ 20 300 glaciers larger than 0.05 km2 (of which ⇠ 900 are marine terminating), covering an area of 130 076 ± 4032 km2, or 89 720 ± 2781 km2 without the CL2 GIC. The latter value is about 50 % higher than the mean value of more recent previous estimates. Glaciers smaller than 0.5 km2 contribute only 1.5 % to the total area but more than 50 % (11 000) to the total number. In contrast, the 25 largest GIC (> 500 km2) contribute 28 % to the total area, but only 0.1 % to the total number. The mean elevation of the GIC is 1700 m in the eastern sector and around 1000 m otherwise. The median elevation increases with distance from the coast, but has only a weak dependence on mean glacier aspect.

Statistics

Citations

Dimensions.ai Metrics
101 citations in Web of Science®
100 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

241 downloads since deposited on 09 Jan 2013
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Scopus Subject Areas:Physical Sciences > Water Science and Technology
Physical Sciences > Earth-Surface Processes
Uncontrolled Keywords:Earth-Surface Processes, Water Science and Technology
Language:English
Date:2012
Deposited On:09 Jan 2013 12:50
Last Modified:23 Jan 2022 23:05
Publisher:Copernicus Publications
ISSN:1994-0416
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.5194/tc-6-1483-2012
Project Information:
  • : FunderFP7
  • : Grant ID226375
  • : Project TitleICE2SEA - Ice2sea - estimating the future contribution of continental ice to sea-level rise
  • Content: Published Version