Abstract
Despite much progress over the past years in fundamental gas hydrate research, frontiers to the unknown are the early beginning and early decomposition of gas hydrates in their natural, submarine environment: gas bubbles meeting ocean water and forming hydrate, and gas starting to escape from the surface of a hydrate grain. In this paper we report on both of these topics, and present three-dimensional microstructure results obtained by synchrotron radiation X-ray cryo-tomographic microscopy (SRXCTM). Hydrates can precipitate when hydrate-forming molecules such as methane exceed solubility, and combine with water within the gas hydrate stability zone. Here we show hydrate formation on surfaces of bubbles from different gas mixtures and seawater, based on underwater robotic in situ experiments in the deep Monterey Canyon, offshore California. Hydrate begins to form from the surrounding water on the bubble surfaces, and subsequently grows inward into the bubble, evidenced by distinct edges. Over time, the bubbles become smaller while gas is being incorporated into newly formed hydrate. In contrast, current understanding has been that hydrate decomposition starts on the outer surface of hydrate aggregates and grains. It is shown that in an early stage of decomposition, newly found tube structures connect well-preserved gas hydrate patches to areas that are dissociating, demonstrating how dissociating areas in a hydrate grain are linked through hydrate that is still intact and will likely decompose at a later stage.