Header

UZH-Logo

Maintenance Infos

Experimental evidence that high levels of inbreeding depress sperm competitiveness


Zajitschek, S R K; Lindholm, A K; Evans, J P; Brooks, R C (2009). Experimental evidence that high levels of inbreeding depress sperm competitiveness. Journal of Evolutionary Biology, 22(6):1338-1345.

Abstract

The effects of inbreeding on sperm quantity and quality are among the most dramatic examples of inbreeding depression. The extent to which inbreeding depression results in decreased fertilization success of a male’s sperm, however, remains largely unknown. This task is made more difficult by the fact that other factors, such as cryptic female choice, male sperm allocation and mating order, can also drive patterns of paternity. Here, we use artificial insemination to eliminate these extraneous sources of variation and to measure the effects of inbreeding on the competitiveness of a male’s sperm. We simultaneously inseminated female guppies (Poecilia reticulata) with equal amounts of sperm from an outbred (f = 0) male and either a highly (f = 0.59) or a moderately inbred (f = 0.25) male. Highly inbred males sired significantly fewer offspring than outbred males, but share of paternity did not differ between moderately inbred and outbred males. These findings therefore confirm that severe inbreeding can impair the competitiveness of sperm, but suggest that in the focal population inbreeding at order of a brother–sister mating does not reduce a male’s sperm competitiveness.

Abstract

The effects of inbreeding on sperm quantity and quality are among the most dramatic examples of inbreeding depression. The extent to which inbreeding depression results in decreased fertilization success of a male’s sperm, however, remains largely unknown. This task is made more difficult by the fact that other factors, such as cryptic female choice, male sperm allocation and mating order, can also drive patterns of paternity. Here, we use artificial insemination to eliminate these extraneous sources of variation and to measure the effects of inbreeding on the competitiveness of a male’s sperm. We simultaneously inseminated female guppies (Poecilia reticulata) with equal amounts of sperm from an outbred (f = 0) male and either a highly (f = 0.59) or a moderately inbred (f = 0.25) male. Highly inbred males sired significantly fewer offspring than outbred males, but share of paternity did not differ between moderately inbred and outbred males. These findings therefore confirm that severe inbreeding can impair the competitiveness of sperm, but suggest that in the focal population inbreeding at order of a brother–sister mating does not reduce a male’s sperm competitiveness.

Statistics

Citations

Dimensions.ai Metrics
56 citations in Web of Science®
54 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Language:English
Date:2009
Deposited On:28 Mar 2013 13:13
Last Modified:23 Jan 2022 23:25
Publisher:Wiley-Blackwell
ISSN:1010-061X
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1111/j.1420-9101.2009.01738.x
Full text not available from this repository.