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Calibration by correlation using metric
embedding from non-metric similarities

Andrea Censi, Member, IEEE, Davide Scaramuzza, Member, IEEE

Abstract —This paper presents a new intrinsic calibration method that allows us to calibrate a generic single-view point camera just
by waving it around. From the video sequence obtained while the camera undergoes random motion, we compute the pairwise time
correlation of the luminance signal for a subset of the pixels. We show that, if the camera undergoes a random uniform motion, then
the pairwise correlation of any pixels pair is a function of the distance between the pixel directions on the visual sphere. This leads to
formalizing calibration as a problem of metric embedding from non-metric measurements: we want to �nd the disposition of pixels on
the visual sphere from similarities that are an unknown function of the distances. This problem is a generalization of multidimensional
scaling (MDS) that has so far resisted a comprehensive observability analysis (can we reconstruct a metrically accurate embedding?)
and a solid generic solution (how to do so?). We show that the observability depends both on the local geometric properties (curvature)
as well as on the global topological properties (connectedness) of the target manifold. We show that, in contrast to the Euclidean case,
on the sphere we can recover the scale of the points distribution, therefore obtaining a metrically accurate solution from non-metric
measurements. We describe an algorithm that is robust across manifolds and can recover a metrically accurate solution when the metric
information is observable. We demonstrate the performance of the algorithm for several cameras (pin-hole, �sh-eye, omnidirectional),
and we obtain results comparable to calibration using classical methods. Additional synthetic benchmarks show that the algorithm
performs as theoretically predicted for all corner cases of the observability analysis.

Index Terms —intrinsic camera calibration, metric embedding, catadioptric cameras, pin-hole cameras, �sh-eye cameras

F

1 INTRODUCTION

In many applications, from classic photogrammetry tasks
to autonomous robotics, camera calibration is a necessary
preliminary step before using the data [ 1]. Calibration is
necessary even for off-the-shelf cameras, as the properties
of an optical system may differ substantially from the
manufacturer's speci�cations. Extrinsic camera calibration
is concerned with recovering the pose (position and
orientation) of the camera with respect to another camera,
or another reference frame of interest. Intrinsic camera
calibration is concerned with estimating the origin and
direction of the line of sight of each pixel; this information
is needed to put into correspondence the image of
an object with the position of the object in the world.
Some scienti�c applications require estimating other
characteristics of the optical system, such as the point-
spread function. Here, we focus on intrinsic camera
calibration for central cameras.

In a central camera, the lines of sight of every pixel
intersect in a single point. Therefore, the intrinsic calibra-
tion information consists of the direction of each pixel
on the visual sphere (S2). If a camera is non central, then
one needs to know, for each pixel, also its spatial position
(in R3) in addition to its direction (in S2). A non-central
camera can be approximated as a central camera only if
the displacement of each pixel's origin is negligible with

� A. Censi is with the Control & Dynamical Systems department, California
Institute of Technology. E-mail: andrea@cds.caltech.edu.

� D. Scaramuzza is with the AI Lab, Department of Informatics, University
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respect to the distance to the objects in the scene. This
assumption is generally satis�ed in applications such as
robotics, but might not be satis�ed for more uncommon
applications and optical systems. A general description
of how the properties of lenses, mirrors, and sensors
contribute to the geometry of an optical system is outside
of the scope of this paper; a recent tutorial is given by
Sturm et al. [2].

Approaches and techniques for intrinsic calibration: Most
widely used techniques for intrinsic camera calibration
(from now on, simply “calibration”) require that the
camera's optics belongs to a restricted family. The model
used for pin-hole camerasis parametrized by the center
of projection, the focal length, and radial and tangential
distortion, which account for the possibility of the im-
age sensor being non perpendicular to the optical axis.
Omnidirectional ( catadioptric) cameras can be obtained
by placing a mirror on top of a conventional camera,
such that the optical axis coincides with the mirror's
axis, or with �sh-eye lenses ( dioptric). The parameters
of the model are the center of projection in image
coordinates and the pro�le of the radial distortion. Several
calibration software tools are available online as open
source. The Matlab Calibration Toolbox [ 3] works for
pin-hole cameras and implements a mix of techniques
appeared in the literature [ 4], [5]. Other software [ 6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16]. can be used for
omnidirectional cameras. Puig et al. [ 17] give a practical
and quantitative comparison.

In most of these methods, the user prints out a cali-
bration pattern consisting of a black and white checker-
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board, and collects several pictures of the pattern from
different points of view. A semi-interactive procedure is
used to identify the corners of the calibration pattern.
Alternatively, the pattern might be autodetected, such as
in OCamCalib [ 7], [18], [14]. Given the positions in image
space of a known pattern, the software automatically
solves for the calibration parameters. The algorithms
rely on the fact that the pattern is known to lie on a
plane, which allows recovering the parameters of the
homography describing the world-to-image transforma-
tion, and that the nonlinear parts of the model, such as
distortion, are simple enough that they can be recovered
using generic nonlinear optimization. An alternative
approach is recovering the calibration parameters as part
of Euclidean reconstruction for moving cameras [ 19], [20].

Recent work has tried to improve �exibility and con-
venience by enlarging the family of optics considered,
or making the calibration procedure more convenient.
Grossberg and Nayar [21] describe a method for calibrat-
ing an arbitrary imaging system, in which the pixels are
allowed to have an arbitrary con�guration on the visual
sphere, that is based on an active display. Hartley [ 22],
Espuny and Gil [ 23], and Ramalingam et al. [24] describe
techniques that do not require a known image pattern,
but are based on known sensor motion.

Calibration in robotics:The last decade has seen the
introduction of autonomous robotic systems where navi-
gation and object recognition are performed with vision
sensors. Precise calibration is needed to ensure the safety
of operation. Moreover, calibration is considered for
robots a “lifelong” activity that should be carried as
autonomously as possible, as eventually any equipment
degrades and must be re-calibrated over the course
of its operating life; therefore, techniques that allow
autonomous unsupervised calibration are especially valu-
able. Several calibration techniques have been designed
to run autonomously embedded in a robotic architecture
(e.g., [25], [26]); in these systems, a reduced set of camera
calibration parameters (e.g., focal length) is treated as
another state variable, and then estimated by a Bayesian
�lter together with the other states.

Calibration by correlation: In this paper, we will describe
an approach to intrinsic camera calibration based exclu-
sively on low-level statistics of the raw pixel streams, such
as the inter-pixel correlation. To the best of our knowledge,
Grossmann et al. [27] were the �rst to propose this idea
for the problem of camera calibration, albeit they were
inspired by work done in developmental robotics and
related �elds [ 28], [29], [30], [31].

The basic premise is that the statistics of the raw pixel
stream contain information about the sensor geometry.
Let yi (t) be the luminance perceived at the i -th pixel at
time t. If we compare the sequencesf yi (t)gt and f yj (t)gt

for the i -th and j -th pixel, we expect to �nd that they are
more similar the closer the two pixels are on the visual
sphere. The geometry of the sensor can be recovered
if one can �nd a statistics of the two sequences that
is precisely a function of the pixels distances. More

formally, let si 2 S2 be the direction of the i -th pixel
on the visual sphere, and let d(si ; sj ) be the geodesic
distance on the sphere between the directions si and sj .
Let S : RT � RT ! R indicate a real-valued statistics of
two sequences of length T. For example, the statistics S
can be the sample correlation, the mutual information,
or any other information-theoretical divergence between
two sequences, such as the “information distance” [ 27].
De�ne the similarity Y ij between two pixels using S:

Y ij = S(f yi (t)gt ; f yj (t)gt ):

The assumption that must be veri�ed for the method to
work, which we will call the monotonicity condition, is that
the similarity is a function f of the pixel distance:

Y ij = f (d(si ; sj )) ; (1)

and that this f is monotonic, therefore, invertible.
Grossmann et al. assume to know the function f from

a preliminary calibration phase, by using a camera with
known calibration sensing the same scene as the camera
being calibrated. If one knows f , the distances can be
recovered from the similarities: d(si ; sj ) = f � 1(Y ij ). Two
algorithms are described for recovering the pixel positions
given the inter-pixel distances. The �rst algorithm is based
on multidimensional scaling (which we will recall in the
following sections) and solves for all pixel directions at
the same time. The authors observe that this method
is not robust enough for their data, and propose a
nonlinear embedding method inspired by Sammon [ 32]
and Lee et al. [33]. This method is iterative and places
one pixel per iteration on the sphere, trying to respect
all constraints with previously placed pixels.

Compared with the calibration methods mentioned
above, the calibration-by-correlation approach is attractive
because it does not require a parametric model of the
camera geometry, control or knowledge of the instanta-
neous sensor motion, or the presence of interest points,
patterns, or other structure in the scene.

However, the results reported by Grossmann et al. do
not compare favorably with traditional methods. The
authors focus their quantitative analysis mainly on the
accuracy of the estimation and inversion of the function f .
They �nd that, for the information distance, f is reliably
invertible only for d(si ; sj ) � 30°.1 For large �eld of view,
the estimated distributions appear signi�cantly “shrunk”
on the visual sphere.2 Moreover, they �nd that, in practice,
the function f is sensitive to the scene content; in their
data, they �nd that applying the function f � 1 estimated
with a calibration rig to the data taken from a different
camera leads to over-estimation of the angular distances.3

Paper outline: We start from the same premise of
Grossmann et al., namely that it is possible to �nd a
statistics of the pixel stream that depends on the pixel

1. Compare Fig. 6 in [27], which shows the graph of f as a function
of distance; and Fig 8ab, which shows the error for estimating f � 1 .

2. See Section 4.4.1 and Fig. 13 in [27]. Note the shrinkage of the
distribution (no quantitative measure is given in the paper).

3. See Section 4.4.2 in [27].
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distance. However, rather than assuming the function f
known, we formulate a joint optimization problem, in
which we solve for both the directions f si g and the
function f . In this way, there is no need for a preliminary
calibration phase with a sensor of known geometry,
but the problem becomes more challenging, requiring
different analytic and computational tools.

Section 2 gives a formal description of the joint op-
timization problem. Section 3 discusses the conditions
under which one can expect a monotonic relation between
pixel distance and pixel statistics. We show that, if
the camera undergoes uniform random motion, then
necessarily all pairwise statistics between pixel values
must depend on the pixel distance only. This suggests
that a good way to collect data for camera calibration is
to wave it around as randomly as possible, a theory we
verify in practice.

Section 4 gives an observability analysis of the prob-
lem. The observability depends both on the manifold's
local geometric properties(curvature) as well as on global
topological properties(connectedness). InRm , the scale is
not observable, but, surprisingly, it is observable in S2

and other spaces of nonzero curvature, which makes the
problem more constrained than in Euclidean space.

Section 5 discusses the performance measures that
are adequate for the problem. The Procrustes error (i.e.,
alignment up to rotations) is an intuitive choice, but it is
not admissible because it is not invariant to all symmetries
of the problem. We use the Spearman scoreas an admissible
and observable performance measure.

Section6 describes our algorithm, which is an extension
of the classical Shepard-Kruskal (SK) algorithm [ 34], [35],
[36], [37]. The major extension is an extra step necessary
to recover the correct scale when it is observable; this
step is critical for accurate calibration.

Section 7 discusses the experimental results for the case
of camera calibration. The algorithm is evaluated for three
different cameras: a pin-hole (45° FOV), a �sh-eye (150°
FOV), and an omnidirectional catadioptric camera ( 360° �
100° FOV). The results obtained are comparable with those
obtained using conventional methods. Section 8 presents
the results on a mix of real and synthetic datasets, which
are meant to include all corner cases of the observability
analysis. This shows that our algorithm is generic and
works for other relevant cases in addition to the case of
camera calibration.

Finally, Section 9 concludes the paper and discusses
some possible directions for future work.

Supplemental materials:Appendix A contains the proofs
that have been omitted for reasons of space. Appendix B
contains the complete statistics and visualization for
the benchmarks discussed. References to materials in
Appendix A/B are written with the “A–” or “B–” pre-
�x; e.g., De�nition A-5. The hyperlinks link to an on-
line copy of the documents. The attached multimedia
materials include the source code to the algorithms
and the intermediate processed results for the test
cases discussed. Datasets and code are available at

http://purl.org/censi/2012/camera_calibration .

2 PROBLEM FORMULATION

Let M be a Riemannian manifold, and let d be its geodesic
distance. We formalize the problem of metric embedding
from non-metric measurements as follows.

Problem 1. Given a symmetric matrix Y 2 Rn � n ,
estimate the set of points S = f si gn

i =1 in a given mani-
fold M , such that Y ij = f (d(si ; sj )) for some (unknown)
monotonic function f : [0; 1 ) ! R.

Without loss of generality, we assume the similarities
to be normalized so that � 1 � Y ij � 1 and Y ii = 1 . This
implies f (0) = 1 , and that f is nonincreasing. For camera
calibration, the manifold M will generally be the unit
sphere S2; however, we formulate a slightly more generic
problem. We will be especially interested in showing how
the observability of the problem changes if M is chosen
to be S1 (the unit circle) or Rm instead of S2.

If the function f was known, it would be equivalent
to know directly the matrix of distances. The problem
of �nding the positions of a set of points given their
distance matrix is often called “metric embedding”. In the
Euclidean case (M = Rm ), the problem is classically called
Multidimensional Scaling(MDS), and was �rst studied in
psychometry in the 1950s. Cox and Cox [38] describe the
statistical origins of the problem and give an elementary
treatment, while France and Carroll [ 37] give an overview
of the algorithmic solutions.

The scenario described in Problem 1 is sometimes called
non-metric multidimensional scaling. The word “non-
metric” is used because the metric information, contained
in the distances d(si ; sj ), is lost by the application of the
unknown function f . In certain applications, it is not
important for the reconstructed points to be recovered
accurately. For example, in psychometry, one might use
these techniques essentially for visualization of high-
dimensionality datasets; in that case, one only wants
a topologically correctsolution. If that is the case, one can
just choose an arbitrary ~f different from the true f ; as
long as f (0) = ~f (0), the results will be topologically
correct. However, in the camera calibration setting, we
are explicitly interested in obtaining a metrically accurate
solution. Note that Problem 1 is a chicken-and-egg
problem in the two unknowns f and f si gn

i =1 : knowing
the function f , one can estimate the distances asf � 1(Y ij ),
and use standard MDS to solve for f si gn

i =1 ; conversely,
knowing the distances, it is trivial to estimate f . But is
it possible to estimate both at the same time? To the
best of our knowledge, there has not been any claim
about whether accurate metric embedding from non-metric
measurementsis possible. In this paper, we will show that
the answer depends on the properties of the manifold M .
Speci�cally, while for Rm the scale is not observable, we
show that accurate metric embedding is possible for S2.
Consequently, it is possible to calibrate a camera from
any statistics that respects the monotonicity condition (1),
even if the function f is a priori unknown.
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Other problems with an equivalent formalization:We are
motivated to solve the problem in a slightly more generic
way than what strictly needed for camera calibration
because some problems in different �elds have an equiv-
alent formalization. In developmental robotics [ 29], [30],
[31], a common scenario is that an agent starts from zero
knowledge of its sensors, and its �rst concern is to recover
the geometry of the sensor (possibly a camera, but also a
range-�nder or other robotic sensor) by considering sim-
ple statistics of the sensor streams. Insensor networks(see,
e.g., [39]), one basic problem is localizing the nodes in
space based on relative measurements of wi-� strength.
Assuming the signal is a function of the distance, one
arrives to the same formalization, using Rn as the target
manifold. More generally, this formalization covers many
embedding problems in machine learning, where the
data is assumed to be in a metric space, but the available
similarities, perhaps obtained by comparing vectors of
featuresof the data, cannot be interpreted directly as
distances in the original metric space.

3 WHEN IS SIMILARITY A FUNCTION OF THE

PIXELS DISTANCE ?
The basic assumption of this paper is that it is possible
to �nd a statistics of the pixel luminance that satis�es
the monotonicity condition (1). We state a result that
guarantees that any pairwise statistics is (asymptotically)
a function of the distance between the pixels, if the camera
undergoes uniformly random motion, in the sense that the
camera's orientation (a rotation matrix R ) is uniformly
distributed in SO(3).

Proposition 2. If the probability distribution of the camera
orientationR is uniform in SO(3), the expectation of a function
of the luminance of two pixels depends only on the pixel
distance: for all functionsg : R � R ! R, there exists a
function f : R+ ! R, such that

Ef g(y(si ); y(sj ))g = f (d(si ; sj )) ;

whereEf�g denotes the expectation with respect toR .

Proof:See SectionA-2 of Appendix A.
In particular, this is valid for the correlation be-

tween pixel values, as the correlation can be written
as corr(yi ; yj ) = Ef g(y(si ); y(sj ))g with g(y(si ); y(si )) =
(y(si ) � y)(y(si ) � y): Most other similarity statistics can
be written in the same fashion.

When is similarity monotonic?

Proposition 2 ensures that (1) holds for some function f ,
but it does not ensure that such function f is monotone.
To �nd conditions that guarantee that f is monotone it is
necessary to introduce some model of the environment.
Essentially, f might not be monotone if there is some
long-range “structure” in the environment. In the case of
the correlation, the statistics of natural images allow con-
cluding that f is monotone for small pixel distances [ 40].

We describe an arti�cial counter example in which f is
not monotone for larger distances.

Example 3. An omnidirectional camera is suspended
in the middle of a room shaped like a parallelepiped
with the base of size L � L and height H � L (Fig. 1).
The projections of ceiling and �oor on the visual
sphere are contained in a spherical cap of radius � =
2 arccos

�
H=

p
H 2 + L 2

�
. For example, L = 5m and H =

10m give � ' 28°. This implies that two pixels observing
the ceiling at the same time cannot be more than 28° apart.
Assume that the �oor and the ceiling are painted of a
uniform white, and the walls have very intricate black-
white patterns, well approximated by white noise. We let
the camera undergo random rotational motion, and we
compute the correlation of the pixel luminance. Consider
two pixels at distance d(si ; sj ) = 60°. They cannot look
both at the ceiling at the same time, because the apparent
size of the ceiling is � = 28°. There are three possibilities:
1) they are both looking at the walls; 2) one is looking at
the walls, another at the ceiling; 3) one is looking at the
walls, another at the �oor. In all cases, one is looking at
the white noise on the walls. Therefore, the correlation
at distance 60° is 0: f (60°) = 0 : Consider two pixels at
distance 180°. There are two possibilities: 1) they are both
looking at the walls; 2) one looks at the ceiling, the other
at the �oor. Because �oor and ceiling have the same color,
the luminance of these two pixels is positively correlated:
f (180°) > 0: Therefore, the function f is not monotonic,
becausef (0°) = 1 , f (60°) = 0 ; and f (180°) > 0:

H

L
white ßoor

walls with
white noise texture

suspended camera

white ceiling

Fig. 1: Environment used in Example 3.

4 OBSERVABILITY ANALYSIS

A symmetryof an estimation problem is any joint trans-
formation of the unknowns (in this case, the directions
S = f si g and the function f ) that does not change the
observations (in this case, the similarities Y ij ). Studying
the observability of the problem means describing what
symmetries are present. In this section, we �rst give a
tour of the symmetries of this problem, before presenting
the main result in Proposition 8.

Isometries: It is easy to see that the similarities Y ij are
preserved by the isometries of the domain M .

De�nition 4. An isometryof M is a map ' : M ! M that
preserves distances:d(' (si ); ' (sj )) = d(si ; sj ). We denote
the set of all isometries of M by Isom(M ).
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sb

sa

sc

(b) Sliding (d) Wiggling: an extreme case, with only three points.(a) Isometries (c) Warping

original
solution

perturbed 
solution

Yij a b c

a 1 0.5 0.2

b 0.5 1 0

c 0.2 0 1 sa

sb

sc

140¡

similarity constraints two different, valid solutions

150¡

80¡

130¡

40¡

180¡

Fig. 2: Symmetries of the estimation problem, illustrated in the case M = S1 . (a) Isometries (for S1 , rotations and re�ections) are unobservable
because they preserve distances between points. (b) Iff is non invertible on the whole domain, disconnected components of S can move
isometrically independently from each other; we call this “sliding”. (c) In manifolds with zero curvature (e.g., Rn and S1 , but not S2 ) the scale is
not observable; formally, a linear warping (De�nition 6) does not violate the problem constraints. (d) If the set of points is �nite, the constraints
are not violated by small perturbations of the points, called “wigglings”.

Sliding: This symmetry exists if f is not informative
enough. De�ne the “informative radius” of f as follows.

De�nition 5. For a function f : R+
� ! R, let infr(f ) be

the maximum r such that f is invertible in [0; r ].

If S has two components distant more than infr(f ) from
each other, then one can be isometrically moved indepen-
dently of the other without changing the observations
(Fig. 2b); we call this “sliding” .

Linear warping: We de�ne a linear warpingas a map that
scales the inter-point distances uniformly by a constant.

De�nition 6. A linear warping of M is a map ' � : M !
M such that, for some � > 0, for all s1; s2 2 M ,

d(' � (s1); ' � (s2)) = � d (s1; s2);

If a linear warping exists, then it is a symmetry of the
problem. In fact, suppose that (f; f si g) is a solution of the
problem. Construct another solution (f 0; f s0

i g), with f 0 =
1
� f and s0

i = ' � (si ). We would not be able to distinguish
between these two solutions, as they would give the same
observations.

Wiggling : A peculiar aspect of Problem 1 is that the
unknowns S = f si gn

i =1 live in a continuous space M ,
but the observations Y ij = f (d(si ; sj )) are actually
equivalent to a set of discrete inequalities, a fact which
is very well explained by Agarwal et al. [ 41]. In fact,
because the function f is completely unknown (the only
constraint being its monotonicity), all that we can infer
about the inter-point distances from the matrix Y is their
ordering: for all (i; j ); (k; l ), if Y ij R Ykl , then we can
infer d(si ; sj ) Q d(sk ; sl ), but nothing more. Therefore, the
suf�cient statistics in the matrix Y ij is the orderingof the
entries, not their speci�c values. This raises the question
of whether precise metric reconstruction is possible, if the
available observations are a set of discrete inequalities.
In fact, given a point distribution f si g of n points, the
position of the generic point sj is constrained by n2

inequalities (many of which redundant). Inequalities
cannot constrain a speci�c position for sj in the mani-
fold M ; rather, they specify a small �nite area in which
all constraints are satis�ed. Therefore, for each solution,
an individual point has a small neighborhood in which

it is free to “wiggle” without violating any constraint. In
general, we call these perturbations “wiggling” 4:

De�nition 7. A wiggling of a set f si g � M is a map ' :
M ! M that preserves the distance ordering:

d(si ; sj ) < d (sk ; sl ) , d(' (si ); ' (sj )) < d (' (sk ); ' (sl )) :

The size of the allowed wiggling decreases with the
density of points; for n points uniformly distributed
in M , one can show that the average wiggling space
is in the order of o(1=n) per single point (i.e., keeping
the others �xed). In the limit as the points become dense,
it is possible to show that wiggling degenerates to rigid
linear warpings. For very sparse distributions, the effect
of wiggling can be quite dramatic (Fig. 2d).

Main result: The following proposition establishes
which of the previously described symmetries are present
in the problem, as a function of the geometric properties
of the spaceM , the point distribution, and the function f .

Proposition 8. Assume the setS = f si g is an open subset
of M whose closure has only one connected component. Let
the available measurements beY ij = f (d(si ; sj )) , wheref :
R+

� ! R is a monotone function withinfr(f ) > 0. Then:
� If M has nonzero curvature (e.g.,S2), then it is possible

to recoverf exactly, andS up to isometries.
� If M has zero curvature:

– If M is simply connected (e.g.,Rm ), then it is possible
to recoverf only up to scale, andS up to isometries
plus a “linear warping” (De�nition 6).

– If M is not simply connected (e.g.,S1), the scale can
be recovered ifinfr(f ) is large enough.
For S1, this happens if

rad(S) + infr(f ) � �; (2)

whererad(S) is the radius ofS (De�nition A-1).
The observability breaks down as follows:

� “Sliding” occurs if S has multiple components with
Hausdorff distance greater thaninfr(f ).

� If S has a �nite number of points, there is a “wiggling”
uncertainty, in the order ofo(1=n) for uniform distribu-
tions.

4. By these de�nitions, isometries � linear warping � wiggling ;
studying when the inclusions of these transformations classes is the
basis of the observability analysis reported in Appendix A.
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TABLE 1: Observability classes

class space curvature extra assumptions symmetries

A S� 2 > 0 - wigglings, isometries

B S1 0 rad(S) + infr (f ) � 2� wigglings, isometries

C S1 0 rad(S) + infr (f ) < 2�
wigglings, isometries,

linear warpings

D Rn 0 -
wigglings, isometries,

linear warpings

A Hn < 0 - wigglings, isometries

Proof:See SectionA-3 in Appendix A.
The results are summarized in Table 1 and the various

observability classes are labeled A–D for later reference.
We note that the observability results depend both on
the local geometrical propertiesof the space (curvature) as
well as the global topological properties(connectedness).

5 MEASURING PERFORMANCE

The performance of an algorithm must be measured in
a way compatible with the observability of the problem.
We expect an error score to be invariant, meaning that
it is conserved by the symmetries of the problem. If a
score is not invariant, it is measuring something that
is not possible to estimate. We expect an error score
to be complete, meaning that it is minimized only by
the solutions of the problem. If an error score is not
complete, it cannot be used to distinguish solutions from
non solutions. Finally, we wish the error score to be
observable, in that it can be computed from the data,
without the ground truth.

Distances-based performance measures: In our case, several
classical error measures, widely used in other contexts,
do not satisfy all these properties. The Procrustes error is
de�ned as the mean distance between the solution f si gn

i =1
and the ground truth f si gn

i =1 , after choosing the best
isometry that makes the two sets overlap [ 42].

De�nition 9. The Procrustes errorepr is de�ned as:

epr (f si g; f si g) , min
' 2 Isom(M )

1
n

nX

i =1

d(si ; ' (si )) : (3)

This error score is unsuitable in our case, because, while
it is invariant to isometries, it is not invariant to the
other symmetries, namely linear warpings and wigglings.
This means that, if we are considering an instance of
the problem where the scale is not observable, using
the Procrustes error can produce misleading results (we
will show this explicitly in Section 8). Moreover, there
is the problem that not all points contribute equally to
this performance measure. When aligning the two points
sets, the points near the center of the distribution will be
always more aligned, and the errors will accumulate for
the points at the borders of the distribution. To eliminate
this problem, we can consider the error on the inter-point
distances rather than the absolute position of the points.

De�nition 10. The mean relative errorer is the mean error
between the inter-point distances:

er(f si g; f si g) ,
1
n2

nX

i;j =1

jd(si ; sj ) � d(si ; sj )j: (4)

This error function is still invariant to isometries, does
not need an optimization problem to be solved, and all
pairs of points contribute equally. Moreover, it can be
easily modi�ed to be invariant to linear warpings: because
linear warpings scale the distances uniformly, we achieve
invariance by optimizing over an unknown scale.

De�nition 11. The mean scaled relative erroresr is the
relative error after the optimal warping:

esr(f si g; f si g) , min
�> 0

1
n2

nX

i;j =1

jd(si ; sj ) � � d (si ; sj )j: (5)

This is invariant to warpings, but still not invariant to
wigglings.

Spearman-correlation-based performance measures: We in-
troduce the Spearman score: an invariant, complete, and
observable score for all observability classes. It is based
on the idea of Spearman correlation, which measures a
possibly nonlinear dependence between two variables,
in contrast with the usual correlation, which can only
assess linear dependence. The Spearman correlation is
a common tool in applied statistics, but it is not widely
used in engineering. The idea is that, to assess nonlinear
relations, we should consider not the value of each datum,
but rather their order (or rank) in the sequence.

De�nition 12. Let order: Rn ! Perm(n) be the function
that computes the order (or rank) of the elements of a
vector. For example, order([2012; 1; 15]) = [2; 0; 1].

De�nition 13. The Spearman correlationbetween two
sequencesx; y is the Pearson correlation of their order
vectors: spear(x; y) , corr(order(x); order(y)) :

Lemma 14. The Spearman correlation detects any nonlinear
monotonic relation:spear(x; y) = � 1 if and only if y = g(x)
for some monotonic functiong.

We use this fact to check whether there exists a
monotonic function f such that Y ij = f (d(si ; sj )) . Given a
solution f si gn

i =1 , we compute the corresponding distance
matrix, and then compute the Spearman correlation of
the distance matrix to the similarity matrix. To that end,
we need to �rst unroll the matrices into a vector using
the operator vec: Rn � n ! Rn 2

.

De�nition 15. The Spearman scoreof a solution f si gn
i =1

is the Spearman correlation between the (�attened)
similarity matrix and the (�attened) distance matrix
D = [D ij ] = [ d(si ; sj )]:

� sp(f si g) , jspear(vec(Y ); vec(D )) j: (6)

The Spearman score is invariant to all symmetries of
the problem, including wigglings, which by de�nition
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preserve the ordering of the distances. It is also complete
because if � sp(f si g; Y ij ) = 1 , then there exists an f such
that Y ij = f (d(si ; sj )) . If the data is corrupted by noise,
� sp = 1 might not be attainable. In that case, it makes
sense to normalize the score by the score of the ground
truth.

De�nition 16. The Normalized Spearman scoreis

� �
sp(f si g; f si g) ,

� sp(f si g)
� sp(f si g)

: (7)

6 ALGORITHM

We describe an extension of the classic Shepard-Kruskal
algorithm (SK) [ 34], [35], [36], [37] that we call SKv+w
(SK variant + warping). The basic idea of SK is to use
standard MDS5 on Y ij to obtain a �rst guess for f si g.
Given this guess, one can obtain a rough estimate ~f
of f ; given ~f , one can apply ~f � 1 to Y ij to obtain an
estimate of the distances Dij ; then one solves again
for f si g using MDS. The SK algorithm does not give
accurate metric reconstruction. Our goal was to obtain
a general algorithm that could work in all corner cases
of the observability analysis. The algorithm described
here will be shown to be robust across a diverse set of
benchmarks on different manifolds, with a vast variation
of shapes of f and noise levels. To this end, we extended
the SK algorithm in several ways. In the following, some
parts are speci�c to the manifold: we indicate by MDSM

a generic implementation of MDS on the manifold M , so
that MDSRn is the classical Euclidean MDS, and MDSSn

is the spherical MDS employed by Grossmann et al..
EM-like iterations (lines3–7 of Algorithm 1): A straight-

forward extension is to iterate the alternate estimation
of f si g and f in an EM-like fashion. This modi�cation
has also been introduced in other SK variants [37]. This
iteration improves the solution, but still does not give
metrically accurate solutions.

Choice of �rst guess for the distance matrix (line1):
Assuming that the similarities have been normalized
(� 1 � Y ij � 1), the standard way to obtain an initial
guess D0

ij for the distance matrix is to linearly scale
the similarities, setting D0

ij / 1 � Y ij : This implies
that, given the perturbed similarities Y?

ij = g(Y ij ) for
some monotone function g, the algorithm starts from a
different guess and has a different trajectory. However,
we expect the same solution because the suf�cient statis-
tics order(Y ?

ij ) = order(Y ij ) is conserved. The �x is to
set D0

ij / order(Y ij ) so that the algorithm is invariant to
the shape of f .

Multiple initializations (line 1): We observed empiri-
cally that multiple initializations are necessary for the
case of Sm . In particular, if one scales D0

ij such that
0 � D0

ij � � , all solutions generated have diameter � � ;

5. Given an n � n distance matrix D , the best embedding in Rm can
be found by solving for the top m eigenvectors of an n � n semide�nite
positive matrix corresponding to a “normalized” version of D [42],
[37].

if one scales D0
ij such that 0 � D0

ij � 2� , all solutions
have diameter � � . Extensive tests show that one of the
two starting points always allows convergence to the true
solution (the other being stuck in a local minimum). In
Algorithm 1 this is represented by a manifold-speci�c
function initM returning the list of initial guesses for D .

Non-parametric inversion off (line 5): We have to �nd
some representation for f , of which we do not know the
shape, and use this representation to compute f � 1. In
this kind of scenarios, a common solution is to use a
�exible parametric representation for f , such as splines
or polynomials. However, parametric �tting is typically
not robust to very noisy data. A good solution is to use
completely non-parametric�tting of f . Suppose we have
two sequences f x i g; f yi g which implicitly model a noisy
relation yi = f (x i )+ noise for some monotone f . Our goal
is to estimate the sequencef f � 1(yi )g. Let sorted(f x i g) be
the sorted sequencef x i g. Then non-parametric inversion
can be obtained by using the order of f yi g to index into
the sorted f x i g array6:

f f � 1(yi )g ' sorted(f x i g)[order(f yi g)]:

This is seen in line 5 applied to the distance and similarity
matrices, unrolled using the vec operator. Note that
because both matrices are symmetric, the �attening and
sorting operation can be restricted on only the upper
triangular part.

Spearman Score as convergence criterion (line3): The itera-
tions are stopped when the Spearman score converges. In
practice, we observed that after 4–7 iterations the score has
negligible improvement for all benchmarks. This score
is also used to choose the best solution among multiple
initializations (line 8).

Warping recovery phase (lines9–12): The most important
change we introduce is a “warping recovery” phase that
changes the qualitative behavior of the algorithm in the
case of Sm ; m � 2. As explained in the observability
analysis, in curved spaces the scale of the points distri-
bution is observable. However, the SK algorithm (i.e.,
lines 3–7 of Algorithm 1) cannot compensate what we
call a linear warping (De�nition 6); in fact, it is easy
to see that if D 0 is a �xed point of the loop, also � D 0,
for � > 0, is a �xed point. In other words, the “null
space” of the Shepard-Kruskal algorithm appears to be
the group of linear warpings. Therefore, we implemented
a simple algorithm to �nd the scale that best embeds
the data onto the sphere, based on the fact that if D
is a distance matrix for a set of points on Sm , then the
cosine matrix cos(D ) must have rank m + 1 . Therefore,
to �nd the optimal scale, we look for the optimal � > 0
such that cos(� D ) is closest to a matrix of rank 3. This is
implemented in lines 9–12, where the ratio of the (m +1) -
th and the (m + 2) -th singular value is chosen as a robust
measure of the rank.

While it would be interesting to observe the im-
provements obtained by each variation to the original

6. The square brackets here indicate indexing into the array, as in
most programming languages (e.g., Python).
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Algorithm 1 The SKv+w embedding algorithm for a generic manifold M .

Input : similarities Y 2 Rn � n ; manifold-speci�c functions: MDSM ; distancesM ; initM . Output: S 2 M n .

1 for D 0 in initM (order(Y )): # Some manifolds need multiple starting points
2 S0 = MDSM (D 0) # Compute �rst guess by MDS
3 for k = 1 ; 2; : : : until sk converged:
4 D k = distancesM (Sk � 1) # Compute current distances
5 D k

? = vec� 1(sorted(vec(D ))[order(vec(Y ))]) # Nonparametric �tting and inversion of f .
6 Sk = MDSM (D k

? ) # Embed according to the modi�ed distances.
7 sk = spearman_score(Sk ; Y ) # Use the Spearman score for checking convergence
8 S? = Sk ?

, where k? = arg maxk sk # Find best iteration according to the score.
9 if M is Sm ; m � 2: # Find optimal warping factor to embed in the sphere.

10 D ? = distancesM (S? )
11 � ? = arg min � � �

m +1 =� �
m +2 , where f � �

i g = singular_values(cos(� D ? ))
12 return MDSM (� ?D ? ) # Embed the warped distances
13 return S?

M -speci�c initializations: initRm (oY ) , oY ; initSm (oY ) , f � oY =n2 ; 2� oY =n2g.

algorithm, for reasons of space we focus only on the
impact of the warping recovery phase. We call SKv the
SKv+w algorithm without the warping recovery phase
(i.e., without the lines 9–12).

Algorithm complexity: The dominant cost of SKv+w lies
in the truncated SVD decomposition needed for MDSM

in the inner loop; the exact decomposition takes O(n3),
which is, in practice, in the order of 5 ms for n = 100 and
500 ms for n = 1000 on current hardware 7. There exist
faster approximations to speed up the MDS step; see, e.g.,
the various Nystrom approximations [ 43]. In practice,
the entire calibration algorithm takes a few seconds for
the datasets discussed later.

7 CAMERA CALIBRATION RESULTS

We divide the experimental evaluation in two sections.
In this �rst section, we describe the results of the method
for camera calibration. In Section 8, we describe a series
of experiments with arti�cial datasets to demonstrate the
various corner cases of the observability analysis.

Hardware: We use three different cameras, covering all
practical cases for imaging systems: a perspective camera
(“ FLIP” in the following), a �sh-eye camera (“ GOPRO”),
and an omnidirectional catadioptric camera (“ OMNI ”).
FLIP: The Flip Mino HD is a $100 consumer-level video
recorder (Fig 3a). It has a 45° FOV; it has a 3X optical zoom,
not used for these logs. GOPRO: The GOPRO is a $300
rugged professional-level �sh-eye camera for outdoor
use (Fig 4a). The �eld of view varies slightly between
127° and 170° according to the resolution chosen; for our
tests, we chose a resolution corresponding to a 150° �eld
of view. OMNI : We used a custom-made omnidirectional
catadioptric camera (Fig. 5a). This is a small, compact
system very popular for micro aerial platforms. The
camera is created by connecting a perspective camera to
a hyperbolic mirror. The resulting �eld of view is 360 °

7. Tests executed using Numpy 1.5, BLAS compiled with Intel MKL,
on a 2.67Ghz Intel Xeon core.

(horizontally) by 100 ° (vertically). The images have much
lower quality than the FLIP and GOPRO (Fig. 4b). Table 2
summarizes the statistics of the three datasets.

TABLE 2: Dataset statistics

camera FOV fps resolution subsampling n length

FLIP 45° 30 1280 � 720 24 � 24 grid 1620 57416

GOPRO 150° 30 1280 � 720 24 � 24 grid 1620 29646

OMNI 360° 20 640 � 480 8 � 8 grid 1470 13131

Manual calibration:We calibrated the cameras using
conventional techniques, to have a reference to which
to compare our method. We calibrated the FLIP using
the Matlab Calibration Toolbox [ 3], which uses a pin-
hole model plus second-order distortion models. We
calibrated the GOPRO and the OMNI using the OCamCalib
calibration toolbox [ 14], using a fourth-order polynomial
for the radial distortion pro�le [ 7], [6], [18]. Examples of
the calibration images are shown in Fig. 3c and 4c.

Data collection: The environment in which the log is
taken in�uences the spatial statistics of the images. The
data logs were taken in a diverse set of environments.
The FLIP data was taken outdoors in the Caltech campus.
The GOPRO data was taken in the streets of Philadelphia,
a typical urban environment. The OMNI data was taken
indoors in a private apartment and an of�ce location. Ex-
amples of the images collected are shown in Fig. 3b, 4b, 5b;
the full videos are available on the website. In all cases,
the cameras were held in one hand and waved around
“randomly”, trying to exercise at least three degrees of
freedom (shoulder, elbow, wrist), so that the attitude of
the camera was approximately uniformly distributed
in SO(3). We did not establish a more rigorous protocol,
as these informal instructions produced good data. Data
taken by exercising only one degree of freedom of the
arm (e.g., forearm, with the wrist being �xed) did not
satisfy the monotonicity assumption.

Data processing:For all cameras, the original RGB stream
of each pixel was converted to a one-dimensional signal
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(a) The Flip Mino (b) Some frames from the calibration sequence. (c) Calibration patterns

Fig. 3: The FLIP camera is a consumer-level portable video recorder. The data for calibration is taken while walking in the Caltech
campus, with the camera in hand, and “randomly” waving the arm, elbow, and wrist.

(a) The GOPRO camera (b) Some frames from the calibration sequence (c) Calibration pattern

Fig. 4: The GOPRO camera is a rugged consumer camera for outdoors use. It uses a �sh-eye lens with 170° �eld of view.

(a) Catadioptric camera (b) Some frames from the calibration sequence (c) Mask used

Fig. 5: Note the small dimensions of this omnidirectional catadioptric camera, very well suited for aerial robotics applications.
The data quality is much lower than for the FLIP and GOPRO data.

Fig. 6: Calibration results for the FLIP data using corr(y) as the similarity statistics. See top of page 10 for explanation.
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Legend for Figure 6,7,8: The �rst row (�g. a,b,c) shows the results of calibration using conventional methods, while the second
row (d,e,f) shows the results of our algorithm. The �rst column (a, d) shows the points distribution on the sphere, displayed
using azimuth/elevation coordinates. The second column (b, e) shows the joint distribution of pixel distance ( d(si ; sj )) and pixels
similarities ( Y ij ), which, in this case, is the correlation. This is the function f that we should �t. Finally, the third column (c, f)
shows order(d(si ; sj )) vs. orderd(si ; sj ) and their correlation, from which we derive the Spearman score.

Fig. 7: Calibration results for the GOPRO data using corr(y) as the similarity statistics. See above for explanation.
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(d) Calibration results (SKv+w)
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Fig. 8: Calibration results for the OMNI data using corr(y) as the similarity statistics. See the top of this page for explanation.
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(d) Calibration results (SKv+w)
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by computing the luminance. We also sub-sampled the
original images with a regular grid so that we could work
with a reduced number of points. For the OMNI data, we
used masking to only consider the annulus around the
center (Fig. 5c), therefore excluding the re�ection of the
camera in the mirror and the interior of the box which
lodged the camera. We used the correlation between the
pixel luminance values as the similarity statistics: Y ij =
corr( yi (t); yj (t) ) ; where yi (t) indicates the luminance of
the i -th pixel at time t. This simple statistics gave the
best results across the different cameras. SectionA-4.1
discusses other possible choices of the similarity statistics.

We found that the monotonicity condition is well
veri�ed for all three cameras. To plot these statistics, we
assume the calibration results obtained with conventional
techniques as the ground truth. The joint distribution of
the similarity Y ij and the distance d(si ; sj ) is shown
in Fig. 6b, 7b, 8b. For these logs, the spatial statistics
were quite uniform: at a distance of 45 °, the inter-pixel
correlation was in the range 0.2–0.3 for all three cameras.
For the GOPRO and OMNI data, the correlation is 0
at around 90°. The correlation is negative for larger
distances. The different average luminance between sky
and ground (or �oor and ceiling) is a possible explanation
for this negative correlation. The OMNI data is very
noisy for distances in the range 90°–180°, as the sample
correlation converges more slowly for larger distances.
To check that the monotonicity condition is satis�ed,
regardless of the shape of f , it is useful to look at the
Spearman diagrams in Fig. 6c, 7c, 8c, for the FLIP, GOPRO,
and OMNI , respectively. These diagrams show, instead
of similarity ( Y ij ) versus distance (d(si ; sj )), the order
of the similarities ( order(Y ij )) versus the order of the
distances (order(d(si ; sj )). The correlation of those gives
the Spearman score (De�nition 15). If there was a perfectly
monotonic relation between similarity and distance, the
diagram would be a straight line, regardless of the shape
of f , and the Spearman score would be 1 (Lemma 14).

7.1 Calibration results

The complete statistics are presented in Appendix B
in Table B-1. The results of manual calibration and
calibration using our method are graphically shown in
Fig. 6d, 7d, 8d. The plots show the data using spherical
coordinates (azimuth/elevation). 8 There is a number of
intuitive remarks that can be made on the results by
direct observations of the resulting point distributions
(or, better, its 3D equivalent). For the FLIP data (Fig. 6d)
the reconstructed directions lie approximately on a grid,
as expected. For this data, and the GOPRO as well, the
estimated points are more regular at the center of the �eld
of view than on the borders. This is probably due to the
fact that the pixels at the border are less constrained. The

8. It is challenging to visualize 3D data with 2D projections, because
any projection will distort some part of the data. For this reason, we
also provide 3D visualization using M ATLAB .�g �gures, which allows
the user to rotate in 3D the data. Click the following links to access
the .�g �les: mino , GOPRO, OMNI .

TABLE 3: Calibration results (normalized Spearman score)

dataset norm. Spearman score � �
sp

S FOV f g. truth SKv SKv+w MDS

FLIP 45° corr(y) 1 0.9998 1.0006 0.9709

GOPRO 150° corr(y) 1 1.0027 1.0029 0.9702

OMNI 360° corr(y) 1 1.0288 1.0288 0.9831

(See complete results in TableB-1b)

TABLE 4: Calibration results (Procrustes error)

dataset Procrustes error

S FOV f SKv SKv+w MDS

FLIP 45° corr(y) 24.05° 0.74° 15.16°

GOPRO 150° corr(y) 4.72° 3.53° 6.20°

OMNI 360° corr(y) 9.48° 9 .48° 32.43°

(See complete results in TableB-1c)

estimated FOV is very similar to the result given by the
manual calibration (43° instead of 45°). For the GOPRO

data (Fig. 7d) the shape of the sensor is well reconstructed,
except for the two upper corners of the camera. The
estimated FOV matches the manual calibration (153°
instead of 150°). For the OMNI data (Fig. 8d) the shape
of the sensor is overall well reconstructed, but it is more
noisy than the FLIP or GOPRO. This is to be expected as
the monotonicity relation is not as well respected (Fig. 8e).

It can be concluded that our method gives results
reasonably close to manual calibration, even for cases
like the OMNI where the monotonicity condition holds
only approximately. As predicted by the observability
analysis, the scale can be reconstructed even without
knowing anything about the function f .

We now look at quantitative performance measures.
As explained before, the only admissible performance
measure is the Spearman score (Table3). When judged
by this performance measure, the SKv+w algorithm is
slightly better than the manual calibration (the normalized
Spearman score is larger than 1). In other words, the esti-
mated distribution is actually a better �t of the similarity
data than the manual calibration results. This implies that
the imprecision in the estimate is a limitation of the input
data rather than of the optimization algorithm; to obtain
better results, we should improve on the data rather than
improving the algorithm.

The Procrustes error (Equation 3) is the most intuitive
performance measure (but not invariant to wiggling).
The results are shown in Table 4. The error with respect
to manual calibration is an average of 0.7° for the FLIP

data, 3.5° for the GOPRO data, and 9.5° for the OMNI

data. The table shows both the results with and without
the warping phase (SKv+w and SKv, respectively). This
makes it clear that the warping phase is necessary to
obtain a good estimate of the directions, especially for
the FLIP data. The difference is lower for the GOPRO data
and negligible for the OMNI data. Intuitively, the warping
phase takes advantages of what can be called “second-
order” constraints, in the sense that they allow us to
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establish the scale at smallFOV, but they disappear as the
FOV tends to zero, because a small enough section ofS2

looks �at (like R2). Finally, the accuracy of MDS is much
lower than SKv or SKv+w. MDS obtains topologically
correct solutions, but the scale is never correctly recovered,
or the data appears otherwise deformed.

These results outperform those of Grossmann et al.
(compare, for example, Figure 13 in [27]), even though
their method assumes that the function f is known, ob-
tained through a separate calibration phase. In principle,
with much more information, their results should be better.
Without having access to their data, we can only speculate
on the reason. Perhaps the simplest explanation is that
they do not “wave around” the camera for collecting
the data; and therefore the monotonicity condition might
not be as well satis�ed. Moreover, they use a similarity
statistics which has very low informative radius (30°).

8 ADDITIONAL EVALUATION

The purpose of this section is to cover all corner cases of
the observability analysis in Proposition 8.

Observability class A: The observability class A corre-
sponds to distributions in S2 where the scale is observable,
and it is possible to reconstruct the directions up to
wiggling. To illustrate the effect of wiggling, we generated
some synthetic datasets, so that the effect of wiggling
can be seen independently of the measurement noise.
We use as the ground truth the distribution of directions
given by manual calibration. We let the function f be
f exp(d) = exp( � 0:52d), which is the exponential kernel
that best �ts the FLIP data (Fig. 6b). The results are shown
in Table 5. We can see that the Spearman score for SKv+w
is 1, meaning that the solution found is a perfect solution
to the problem. However, the Procrustes error is 1.25°.
This is the practical demonstration that the Procrustes
error is not admissible. This synthetic experiment gives
us a sense of what is the accuracy in the directions
domain that we can obtain in practice, even if we had
perfect measurements of the correlation. The Procrustes
error for the real data is in the order of 1 °; this means
that the contribution of the noise is commensurable to
wiggling, and the results would bene�t more from using a
denser grid rather than longer logs. The Procrustes error
is negligible for the omnidirectional data. This shows
that an omnidirectional directions distributions makes
the problem overall more constrained.

TABLE 5: Benchmarks for class A (S2) with synthetic data

dataset Spearman score Procrustes error

S FOV f g. truth SKv+w g. truth SKv+w

FLIP 45° f exp 1 1.000 0° 1.25°

GOPRO 150° f exp 1 1.000 0° 0.90°

OMNI 360° f exp 1 1.000 0° 0 .00°

(See complete results in TableB-2a and B-2c)

Observability class B: The observability class B corre-
sponds to distributions on S1 where the scale is observ-
able due to the non-simply connected topology and a

function f with large informative radius. For this set
of benchmarks we generated the synthetic similarity
using three functions f (Table 6). The function f lin(d)

TABLE 6: Kernels used in synthetic benchmarks

f infr (f )

f lin (d) = 0 :5 � 0:5d 180°

f smooth(d) = cos 3 (d) 180°

f steep(d) = max f cos3 (d); 0g 90°

is linear in the distance d. The function f smooth(d) is
nonlinear in the distance, but still invertible on the
whole domain. The function f steep is equal to f smooth

for d 2 [0; 90°] and 0 for d � 90°. This implies that
infr(f steep) = 90°. We simulated random distributions of
points in S1 with 315° FOV. This satis�es condition (2)
because315°=2+90° � 180°: SKv recovers the scale of the
distribution in all cases, while MDS recovers it correctly
only for linear f (Table 7).

TABLE 7: Benchmarks for class B (S1 , observable scale)

dataset diameter

S FOV f MDS SKv

random dist. 315° f lin 318° 318°

random dist. 315° f steep 127° 312°

random dist. 315° f smooth 114° 316°

(See complete results in TableB-4c and B-4a)

Observability class C:The observability class C cor-
responds to the case of S1 in which the scale is not
observable, becausef is not informative enough. We use a
mix of synthetic data and real data. For the synthetic data,
we simulated a random distribution of directions on S1

with FOV 45° and 90°. For the real data, we extracted the
center scan line of the FLIP and GOPRO data. We know
that these pixels lie approximately on a great circle of S2,
therefore this data can be embedded in S1. Table 8 shows
the Spearman score and the Procrustes error obtained
by MDSSn and SKv. The most interesting fact about these
benchmarks is that they clearly show that, without a
proper observability analysis, one might reach erroneous
conclusions by considering a non-admissible performance
measure. If one were to compare MDS and SKv only on
the Procrustes error, one would conclude erroneously that
MDS performs better than SKv. However, in reality, SKv
gives better results, as can be seen from the Spearman
score. What is happening is that, for the non-admissible
measure, the intrinsic bias of MDS is better adjusted to
the dataset bias.

Observability class D:The observability class D corre-
sponds to the Euclidean case, where the scale is not
observable. For this class we used exclusively synthetic
data. We simulated a random distribution of points on
the [0; 1] � [0; 1] square, and for the similarities we used
the three functions f lin , f steep, f smooth. The data in Table 9
is a simple veri�cation of the fact that MDS provides a
correct reconstruction only if similarity is a linear function
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TABLE 8: Benchmarks for class C (S1 , unobservable scale)

dataset Spearman score Procrustes error

S FOV f MDS SKv MDS SKv

FLIP (center) 23° corr(y) 0.9706 0.9999 13.52° 25.62°

random dist. 45° f smooth 0.9987 0.9999 7.47° 20.08°

GOPRO (center) 75° corr(y) 0.9592 0.9988 8.58° 13.01°

random dist. 90° f smooth 0.9853 0.9997 9.22° 8.41°

(See complete results in TableB-5c and B-5a)

of the distance, while SKv provides the correct solution
regardless of the shape of f .

TABLE 9: Benchmarks for class D (R2)

dataset norm. Spearman score � �
sp

S f g. truth MDS SKv

random square f lin 1 1.000 1.000

random square f steep 1 0.7706 1.000

random square f smooth 1 0.9182 1.000

(See complete results in TableB-6a)

9 CONCLUSIONS

We presented a calibration method that does not need
any known calibration pattern, known camera motion,
or another calibrated apparatus. It does not have any
assumption on the camera model, and is therefore able to
calibrate any single-view point cameras. We have shown
that calibration-by-correlation is an instance of the prob-
lem of metric embedding from non-metric measurements,
which appears naturally in many other �elds. So far, it
has implicitly been assumed that it is not possible to
recover the metric information (scale of the distribution)
from non-metric measurements. We have given a com-
prehensive discussion of the observability of the problem,
showing that it depends both on the local geometrical
characteristics (curvature) as well as the global topological
properties (connectedness) of the particular manifold
considered. While in Euclidean space it is neverpossible
to recover the scale, it is possible in spaces of nonzero
curvature, or in non-simply connected manifolds such
asS1. We have presented an optimization algorithm based
on the classical Shepard-Kruskal algorithm, with several
additions that make it robust across manifolds and a
variety of benchmarks. The main addition is a “warping
recovery phase” that is necessary to obtain the correct
scale in the spherical case. In addition to the camera
calibration problem, we evaluated the algorithm on a
series of synthetic benchmarks, making sure it works as
expected in all corner cases of the observability analysis.
Therefore, it will likely be useful for problems other than
camera calibration that have a similar formalization.

Future work: On the theoretical side, there is still much
to do in the analysis of Problem 1. We have provided
an observability analysis, but not a result, in the spirit of
the Cramér–Rao bound, to establish what noise level can
be tolerated on f to obtain a given accuracy. Because the

observations can be interpreted as a set of inequalities,
while the unknowns live in a continuous space, standard
techniques cannot be used. On the algorithmic side,
there is still much to do about proving the convergence
properties of the algorithm. The algorithm appears to be
robust across diverse benchmarks, but we do not have
proofs of global convergence. The analysis is dif�cult
because the algorithm is a mix of “continuous” operations
(e.g., computing the SVD of a matrix) and “discrete”
operations (e.g., reordering the elements of the matrix).
Several other extensions are motivated by the problem of
camera calibration. As noted before, it is an open question
whether one can �nd a better similarity statistics than the
correlation, and whether there exists other motions, other
than random rotations, that guarantee a monotonic f . It
would also be useful to study extensions of the problem to
non-monotonic functions f , or that allow for the statistics
to vary in different parts of the �eld of view. This would
allow to use data taken when the camera has a �xed
attitude (as in autonomous vehicles). It would also be
useful to extend this method to non-central cameras,
where each pixel has a direction si 2 S2 and a spatial
position in R3. Finally, the most immediate future work
is integrating this method with parametric methods that
use a prior knowledge of the camera model [ 7], to obtain
the best of both worlds.
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Calibration by correlation using metric
embedding from non-metric similarities

Supplementary materials

F

A-1 DEFINITIONS

For convenience of the reader, we also repeat various de�nitions which have been omitted or only stated informally.
Introductory references for the differential geometric concepts used in this paper are [ 1], [2].

R+
� is the set of positive reals. The generic m-sphere is Sm . S2 is the 3D sphere, and S1 is the circle. The target

manifold is M and d indicates its geodesic distance. The set of unknown points to be reconstructed is S = f si g.

De�nition A-1. The radius of a set S= f si g is de�ned as

rad(S) , min
i

max
j

d(si ;sj ): (1)

The diameteris twice the radius.

De�nition A-2. The informative radiusinfr(f ) of f is the maximum r such that f is invertible in [0; r ].

De�nition A-3. An isometryis a map ' : M ! M that preserves distances:d(' (si ); ' (sj )) = d(si ; sj ).

De�nition A-4. A conformal mapis a map that preserves the angles between geodesics.

A map is conformal if and only if its Jacobian is proportional to an orthogonal matrix.

De�nition A-5. A generic warpingis a map ' m : M ! M such that d(' (s1); ' (s2)) = m(d(s1; s2)) , for some monotonic
function m : R+

� ! R+
� .

De�nition A-6. A linear warping is a map ' � from M to itself such that d(' � (s1); ' � (s2)) = �d (s1; s2) for some
� > 0.

De�nition A-7. A wiggling of a set f si g � M is a map ' : M ! M that preserves the order of distances: for all
i; j; k; l : d(si ; sj ) < d (sk ; sl ) , d(' (si ); ' (sj )) < d (' (sk ); ' (sl )) :

De�nition A-8. A geodesic curveg(A; B; t ) from point A to point B , for t 2 [0; 1], is the curve on the manifold such
that

d(g(A; B; t ); A) = td(A; B );

d(g(A; B; t ); B ) = (1 � t)d(A; B ):

In particular, g(A; B; 0) = A and g(A; B; 1) = B:

A-2 PROOF OF PROPOSITION 2
We use some language (Haar measure) from group theory; for reference, see, e.g., [3], [4].

The luminance at pixel s 2 S2 at time t can be written as

y(s; t) = h(t (t); R (t) s);

where t 2 Rm is the sensor position, R 2 SO(3) is the sensor orientation, and h : R3 � S2 ! R is a function that
describes the environment. In the following, we drop the dependence on time.

We will show that the statistics depends only on the distance between two pixels, by showing that any pair of
pixels with the same distance give the same value of the statistics. Consider two pairs of pixels (si ; sj ) and (sk ; sl )
having the same distance:

d(si ; sj ) = d(sk ; sl ):
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Becaused(si ; sj ) = d(sk ; sl ); there exists an X such that

sk = X si ; sl = X sj : (2)

If the probability distribution of R is uniform on SO(3), that is, it is the Haar measure SO(3), then it is also
invariant to a rotation (i.e., left/right actions): for all functions z and rotations X , Ef z(R )g = Ef z(RX )g.

If we choose the X such that (2), we obtain that

Ef g(y(si ); y(sj ))g = Ef g(h(t ; R si ); h(t ; R sj ))g

= Ef g(h(t ; R X si ); h(t ; R X sj ))g (3)

= Ef g(y(sk ); y(sl ))g: (4)

A-3 PROOF OF PROPOSITION 8
A-3.1 Proof overview

The starting point is considering that the largest unobservable transformations are the set of wigglings (De�nition 7),
because they are exactly those that keep constant the order of the inter-points distances, which is the suf�cient
statistics for the estimation problem. All other symmetries—isometries (De�nition A-3), linear warping (De�nition 6),
generic warping (De�nition A-5) are a specialized version of wigglings. Moreover, an isometry is a linear warping
with � = 1 , and a linear warping is a specialization of a generic warping. In summary, just by the de�nition of the
various transformations, we have the following chain of inclusions:

isometries �
linear

warpings
�

generic
warpings

� wigglings.

Isometries and warpings are very structured transformations, but wigglings are in general discontinuous. The next
step in the analysis is understanding in what cases the set of wigglings is more structured. Proposition A-9 shows
that, as the number of points becomes large (in the limit, in�nite), wigglings are constrained to be generic warpings.
Thus, if S has an in�nite number of points, we have the following:

isometries �
linear

warpings
�

generic
warpings

n !1= wigglings.

With this assumption, we now can study a much more well-behaved set of transformations. Proposition A-10 gives
the unexpected result that, in general, there exist no generic nonlinear warpings (De�nition A-5), a result that does
not depend on the manifold yet (i.e., we did not consider topology or curvature). Intuitively, there is no way to
deform the distances in a nonlinear way that maintains the consistency of all constraints. The proof is based on an
elementary argument based on the fact that any generic warping must preserve geodesics (Lemma A-11). Thus, only
by assuming that the number of points is large, and with no assumptions on the manifold, we can conclude that:

isometries �
linear

warpings
=

generic
warpings

= wigglings

This means that the largest group of symmetries of the problem is composed by linear warping. At this point,
we have to consider the property of the manifold. Proposition A-12 shows that, if the manifold has nonpositive
curvature, then all linear warpings are necessarily isometries (the scaling factor is 1):

isometries

M
curved

=
linear

warpings
=

generic
warpings

= wigglings

This means that for the sphere S2 and the hyperbolic plane, isometries are the largest group of symmetries. This is
surprising, because it means that we can recover the scale, even though the measurements available are completely
non-metric. Instead, for Euclidean spaces, it is easy to see that a linear warping is always unobservable. Finally,
Proposition A-13 discusses the special case of the circle. Because the topology is not simply connected, it is possible
to establish additional constraints: intuitively, an arbitrary warping is not allowed, because if the distribution S is
in�ated too much, the tails will “crash” into each other and violate the problem constraints.

A-3.2 Proof details

Proposition A-9. If S is a connected open set, all wigglings are generic warpings.

Proof:The intuition is that a non-trivial wiggling is possible only if there are “gaps” between the points; as the
points get denser, the gaps close and the wiggling degenerates to a warping.
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Note that the de�nition of wiggling does not imply any particular property of the map ' such as continuity. It is
a map de�ned only the subset S of M . There is no information of how ' behaves outside of S. However, if S is an
open subset of M , then necessarily ' must have certain regularities.

First of all, it should necessarily be a continuous map. This can be seen directly from the relation d(si ; sj ) <
d(sk ; sl ) , d(' (si ); ' (sj )) < d (' (sk ); ' (sl )) if we let si = sk and consider two sequencess(m )

j
m !1! si and s(m )

l
m !1!

sk .
Consider two pairs of points si ; sj at distance � = d(si ; sj ). Consider two other pairs of points sk ; sl with the

same relative distance � = d(sk ; sl ) — because the set is open, and the distance is continuous,sk can be found
in a neighborhood of si and sj in a neighborhood of sl . Becaused(si ; sj ) = d(sk ; sl ), the wiggling direction
constraint implies that d(' (si ); ' (sj )) = d(' (sk ); ' (sl )) . Becausesk ; sl have no other relation to si ; sj other than
their distance, it follows that the distance of two points transformed by ' only depends on their initial distance:
d(' (si ); ' (sj )) = m(d(si ; sj )) , for some possibly nonlinear function m. Because' is continuous, this holds for all
points in S, therefore ' is a generic warping.

Proposition A-10. All generic warpings are linear warpings.

Proof:The proof relies on Lemma A-11 below, which says that generic warpings preserve the geodesics. This
means that, if the midpoint between A and B is C, then ' (C) is the midpoint between ' (A) and ' (C). Let
d(A; C ) = d(C; B ) = `. Then d(' (A); ' (C)) = d(' (C); ' (B )) = m(`): We can �nd two different expressions for
d(' (A); ' (B )) :

d(' (A); ' (B )) = m(d(A; B )) = m(2`); and

d(' (A); ' (B )) = d(' (A); ' (C)) + d(' (C); ' (B )) = 2 m(`):

It follows that m(`) = 1
2 m(2`). Generalize this reasoning to an equal division of the geodesics in k parts, to derive

m(x) = 1
k m(kx), for all x > 0 and integers k � 1. Take the derivative of both sides with respect to x to obtain

m0(x) = m0(kx). For any y > 0, let x = y=k > 0, and let k ! 1 , to obtain m0(y) = m0(0), which implies that m is a
linear function.

Lemma A-11. A generic warping preserves geodesics. More formally, forA; B 2 M and t 2 [0; 1], let g(A; B; t ) be the
geodesic betweenA and B . If ' : M ! M is a warping, theng(' (A); ' (B ); t) = ' (g(A; B; t )) .

Proof:As a base case, we prove the statement for the midpoint. Suppose that there exists a geodesic between
A and B . Let C be the midpoint between A and B, with d(A; C ) = d(C; B ) = L: Let a = ' (A) and b = ' (B ) be
the transformed points. Let c = g(a; b; 1

2 ) be the midpoint between a and b, with d(a; c) = d(c; b) = `. Using some
elementary properties of geodesics, we shall derive that ' (C) = c.

Becausec is the midpoint, the shortest path between a and b goes through c:

d(a; c) + d(c; b) � d(a; x) + d(x; b); for all x:

Write this for x = ' (C):
d(a; c) + d(c; b) � d(a; ' (C)) + d(' (C); b)

On the right-hand side, substitute d(a; ' (C)) = d(' (A); ' (C)) = m(d(A; C )) , using the de�nition of warping. Likewise
d(' (C); b) = d(' (C); ' (B )) = m(d(C; B )) , giving

d(a; c) + d(c; b) � m(d(A; C )) + m(d(C; B )) :

The point c is the midpoint, so let ` = d(a; c) = d(c; b), and L = d(A; C ) = d(C; B ). We obtain that ` � m(L).
We can do the same computation with A and B. Because C is the midpoint between A and B , we have

that d(A; C ) + d(C; B ) � d(A; x ) + d(x; B ); for all x. Write it for x = ' � 1(c) and substitute A = ' � 1(a) and
B = ' � 1(b) to obtain 2L � d(A; ' � 1(c)) + d(' � 1(c); B ) = d(' � 1(a); ' � 1(c)) + d(' � 1(c); ' � 1(b)) = m� 1(d(a; c)) +
m� 1(d(c; b)) = 2 m� 1(`), which gives us ` � m(L): Together with ` � m(L), we conclude that ` = m(L). This means
that d(a; ' (C)) = d(' (C); b) = `, and hence ' (C) is the midpoint between a and b. Because the midpoint is unique,
it follows that c = ' (C).

We have proved that g(' (A); ' (B ); 1
2 ) = ' (g(A; B; 1

2 )) . By dividing the original geodesics, and applying the
reasoning above recursively, one can show that g(' (A); ' (B ); a

2b ) = ' (g(A; B; a
2b )) for all integers b � 0 and a � 2b.

The set of dyadic rationals a=2b is dense in [0; 1], and the functions t 7! g(' (A); ' (B ); t) and t 7! ' (g(A; B; t )) are
continuous, because they are compositions of continuous functions. If two continuous functions on the same domain X
agree on a dense subset ofX , the agree on the whole domain. Therefore, it holds that g(' (A); ' (B ); t) = ' (g(A; B; t ))
for all t 2 [0; 1].

Proposition A-12. For Sm ; m � 2 and the hyperbolic plane, all linear warpings are isometries.
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Proof:This is true for all manifolds with nonzero curvature, but the m-sphere and the hyperbolic plane admit
an elementary proof based on spherical/hyperbolic geometry. Firstly, note that a linear warping is a conformal
map (De�nition A-4) as the Jacobian is uniformly � times an orthogonal matrix. Conformal maps preserve angles
between geodesics.

Now it is time to recall high-school facts about spherical geometry: the sides of a spherical triangle are uniquely
determined by its angles. The same is true for the hyperbolic plane [ 2].

Consider now three points in S and the induced spherical/hyperbolic triangle. Under a linear warping, its internal
angles are preserved because a linear warping is conformal. Because the angles are preserved, the sides of the
triangle are preserved as well, and therefore the distance between points is unchanged. Hence any linear warping is
an isometry.

Proposition A-13. If M = S1 and rad(S) + infr(f ) < 2� , a linear warping with� � (2� � rad(S))=infr(f ) is unobservable.

Proof: (sketch) This can be veri�ed directly; the upper bound on � ensures that the tails of S do not overlap in
the informative range of f . This result does not hold for S2, where the geometry of the problem constrains linear
warpings to be isometries ( � = 1 ).

A-4 A DDITIONAL EXPERIMENTS

A-4.1 Results for different similarity statistics

Proposition 2 ensures that any statistics is a function of the pixel distance, but this result is limited in three ways: 1) it
is only an asymptotic result, valid as time tends to in�nity; 2) it assumes a perfectly uniform attitude distribution;
and 3) it does not ensure that the function f is invertible (monotonic). Therefore, it is still an engineering matter to
�nd a statistics which is 1) robust to �nite data size; 2) robust to a non-perfectly uniform trajectory; and 3) has a
large invertible radius. An exhaustive treatment of this problem is outside the scope of this paper and delegated to
future work. Here, we brie�y show the results for three other statistics in addition to the luminance correlation.
All statistics are de�ned as the correlation of an instantaneous function of the luminance and can be ef�ciently
computed using streaming methods. The �rst variant consists in applying an instantaneous contrast transformation
c : y 7! y2 to the luminance before computing the correlation:

Y ij = corr( c(yi (t)) ; c(yj (t)) ) (5)

The second statistic is the correlation of the temporal derivative _y = d
dt y of the luminance:

Y ij = corr( _yi (t); _yj (t) ) (6)

This was inspired by recent developments in neuromorphic hardware [ 5]. Finally, we consider the correlation of the
sign of the luminance change, as it is invariant to contrast transformations:

Y ij = corr( sgn( _yi (t)) ; sgn( _yj (t)) ) : (7)

Table A-1 shows the Spearman score obtained by using these on theOMNI data (the most challenging dataset).
We �nd, in this case, that the contrast-scaled luminance (5) is slightly better than the simple correlation; the solution
found is qualitatively similar (Fig. ??). The two other similarity statistics (6) and (7) have much lower scores; for
them, the monotonicity assumption is not well veri�ed: their distributions are not informative for large distances
(Fig. ??, ??). It is clear that there is a huge design space for similarity statistics. In the end, we did not �nd any
statistic which was better than the simple correlation uniformly for all our three data sets. Therefore, we consider
this an open research question.

TABLE A-1
Results with different similarity statistics

dataset Spearman score

S f g. truth SKv+w

OMNI corr(y) 0.9173 0.9438

OMNI corr(c(y)) 0.9212 0.9465

OMNI corr( _y)) 0.8550 0.9211

OMNI corr(sgn( _y)) 0.8739 0.9077

(See complete results in Table??)
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TABLE B-1: Observability case A: real noisy data

(a) Spearman score — equation6

g. truth MDSSn SKv SKv+w

FLIP/ corr(y) 0.9990 0.9699 0.9989 0.9996
GOPRO/ corr(y) 0.9949 0.9652 0.9975 0.9977

OMNI / corr(y) 0.9173 0.9019 0.9438 0.9438

(b) Normalized Spearman score — equation 7

g. truth MDSSn SKv SKv+w

FLIP/ corr(y) 1.0000 0.9709 0.9998 1.0006
GOPRO/ corr(y) 1.0000 0.9702 1.0027 1.0029

OMNI / corr(y) 1.0000 0.9831 1.0288 1.0288

(c) Procrustes error — equation 3

g. truth MDSSn SKv SKv+w

FLIP/ corr(y) 0.00 15.16 24.05 0.74
GOPRO/ corr(y) 0.00 6.20 4.72 3.53

OMNI / corr(y) 0.02 32.43 9.48 9.48

(d) Relative error — equation 4

g. truth MDSSn SKv SKv+w

FLIP/ corr(y) 0.00 7.14 11.87 0.36
GOPRO/ corr(y) 0.00 1.72 0.95 0.79

OMNI / corr(y) 0.00 2.20 1.80 1.80

(e) Scaled relative error — equation 5

g. truth MDSSn SKv SKv+w

FLIP/ corr(y) 0.00 1.79 0.40 0.33
GOPRO/ corr(y) 0.00 5.99 2.51 2.55

OMNI / corr(y) 0.00 11.90 8.91 8.91

(f) Diameter — equation 1

g. truth MDSSn SKv SKv+w

FLIP/ corr(y) 45.13 75.15 133.19 42.63
GOPRO/ corr(y) 150.99 111.82 129.79 153.06

OMNI / corr(y) 329.54 221.53 312.77 312.77

TABLE B-2: Observability case A: synthetic noiseless data

(a) Spearman score — equation6

g. truth MDSSn SKv SKv+w

FLIP/ f exp 1.0000 0.9704 0.9992 1.0000
GOPRO/ f exp 1.0000 0.9499 0.9999 1.0000

OMNI / f exp 1.0000 0.9739 1.0000 1.0000

(b) Normalized Spearman score — equation 7

g. truth MDSSn SKv SKv+w

FLIP/ f exp 1.0000 0.9704 0.9992 1.0000
GOPRO/ f exp 1.0000 0.9499 0.9999 1.0000

OMNI / f exp 1.0000 0.9739 1.0000 1.0000

(c) Procrustes error — equation 3

g. truth MDSSn SKv SKv+w

FLIP/ f exp 0.00 16.17 24.07 1.25
GOPRO/ f exp 0.00 8.04 3.52 0.90

OMNI / f exp 0.02 37.07 0.00 0.00

(d) Relative error — equation 4

g. truth MDSSn SKv SKv+w

FLIP/ f exp 0.00 7.54 11.79 0.63
GOPRO/ f exp 0.00 2.00 0.55 0.12

OMNI / f exp 0.00 2.95 0.00 0.00

(e) Scaled relative error — equation 5

g. truth MDSSn SKv SKv+w

FLIP/ f exp 0.00 1.83 0.26 0.06
GOPRO/ f exp 0.00 7.60 0.26 0.12

OMNI / f exp 0.00 9.54 0.00 0.00

(f) Diameter — equation 1

g. truth MDSSn SKv SKv+w

FLIP/ f exp 45.13 78.76 134.75 41.13
GOPRO/ f exp 150.99 112.33 136.53 154.00

OMNI / f exp 329.54 189.61 329.54 329.54
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TABLE B-3: Observability case A: multiple statistics

(a) Spearman score — equation6

g. truth SKv+w

OMNI / corr(y) 0.9173 0.9438
OMNI / corr(c(y)) 0.9212 0.9465

OMNI / corr( _y)) 0.8550 0.9211
OMNI / corr(sgn( _y)) 0.8739 0.9077

(b) Normalized Spearman score — equation
7

g. truth SKv+w

OMNI / corr(y) 1.0000 1.0288
OMNI / corr(c(y)) 1.0000 1.0274

OMNI / corr( _y)) 1.0000 1.0773
OMNI / corr(sgn( _y)) 1.0000 1.0387

(c) Procrustes error — equation 3

g. truth SKv+w

OMNI / corr(y) 0.02 9.48
OMNI / corr(c(y)) 0.02 9.30

OMNI / corr( _y)) 0.02 16.07
OMNI / corr(sgn( _y)) 0.02 10.24

(d) Relative error — equation 4

g. truth SKv+w

OMNI / corr(y) 0.00 1.80
OMNI / corr(c(y)) 0.00 1.75

OMNI / corr( _y)) 0.00 2.35
OMNI / corr(sgn( _y)) 0.00 2.61

(e) Scaled relative error — equation 5

g. truth SKv+w

OMNI / corr(y) 0.00 8.91
OMNI / corr(c(y)) 0.00 8.72

OMNI / corr( _y)) 0.00 14.50
OMNI / corr(sgn( _y)) 0.00 9.22

(f) Diameter — equation 1

g. truth SKv+w

OMNI / corr(y) 329.54 312.77
OMNI / corr(c(y)) 329.54 317.39

OMNI / corr( _y)) 329.54 284.65
OMNI / corr(sgn( _y)) 329.54 286.48
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TABLE B-4: Benchmarks for observability case B (data in S1, observable scale)

(a) Spearman score — equation6

g. truth MDSSn SKv SKv+w

S1 , 315deg, f steep 0.8917 0.7739 0.8892 0.8892
S1 , 315deg, f smooth 0.9741 0.8357 0.9740 0.9740

S1 , 315deg, f lin 0.9993 0.8391 0.9993 0.9993

(b) Normalized Spearman score — equation 7

g. truth MDSSn SKv SKv+w

S1 , 315deg, f steep 1.0000 0.8679 0.9972 0.9972
S1 , 315deg, f smooth 1.0000 0.8579 0.9999 0.9999

S1 , 315deg, f lin 1.0000 0.8397 1.0000 1.0000

(c) Procrustes error — equation 3

g. truth MDSSn SKv SKv+w

S1 , 315deg, f steep 0.00 31.24 3.84 3.84
S1 , 315deg, f smooth 0.00 33.46 0.78 0.78

S1 , 315deg, f lin 0.00 40.26 0.07 0.07

(d) Relative error — equation 4

g. truth MDSSn SKv SKv+w

S1 , 315deg, f steep 0.00 2.56 1.58 1.58
S1 , 315deg, f smooth 0.00 2.71 0.56 0.56

S1 , 315deg, f lin 0.00 2.85 0.09 0.09

(e) Scaled relative error — equation 5

g. truth MDSSn SKv SKv+w

S1 , 315deg, f steep 0.00 26.98 5.17 5.17
S1 , 315deg, f smooth 0.00 26.65 1.07 1.07

S1 , 315deg, f lin 0.00 27.63 0.10 0.10

(f) Diameter — equation 1

g. truth MDSSn SKv SKv+w

S1 , 315deg, f steep 317.92 126.81 312.15 312.15
S1 , 315deg, f smooth 317.92 114.04 316.75 316.75

S1 , 315deg, f lin 317.92 95.33 318.10 318.10

(g) Angular correlation

g. truth MDSSn SKv SKv+w

S1 , 315deg, f steep 1.0000 0.9646 0.9991 0.9991
S1 , 315deg, f smooth 1.0000 0.9620 1.0000 1.0000

S1 , 315deg, f lin 1.0000 0.9417 1.0000 1.0000
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TABLE B-5: Benchmarks for observability case C (data in S1, unobservable scale)

(a) Spearman score — equation6

g. truth MDSSn SKv

S1 , 90deg, f lin 0.9999 0.9996 0.9999
S1 , 45deg, f lin 0.9999 0.9999 0.9999

S1 , 45deg, f smooth 0.9999 0.9987 0.9999
S1 , 90deg, f smooth 0.9999 0.9853 0.9997

FLIP (center)/ corr(y) 0.9997 0.9706 0.9999
GOPRO (center)/ corr(y) 0.9996 0.9592 0.9988

(b) Normalized Spearman score — equation 7

g. truth MDSSn SKv

S1 , 90deg, f lin 1.0000 0.9997 1.0000
S1 , 45deg, f lin 1.0000 1.0000 1.0000

S1 , 45deg, f smooth 1.0000 0.9988 1.0000
S1 , 90deg, f smooth 1.0000 0.9854 0.9998

FLIP (center)/ corr(y) 1.0000 0.9708 1.0002
GOPRO (center)/ corr(y) 1.0000 0.9596 0.9992

(c) Procrustes error — equation 3

g. truth MDSSn SKv

S1 , 90deg, f lin 0.00 7.27 8.43
S1 , 45deg, f lin 0.00 3.47 20.08

S1 , 45deg, f smooth 0.00 7.47 20.08
S1 , 90deg, f smooth 0.00 9.22 8.41

FLIP (center)/ corr(y) 0.00 13.52 25.62
GOPRO (center)/ corr(y) 0.00 8.58 13.01

(d) Relative error — equation 4

g. truth MDSSn SKv

S1 , 90deg, f lin 0.00 1.56 1.69
S1 , 45deg, f lin 0.00 1.42 8.07

S1 , 45deg, f smooth 0.00 2.79 8.07
S1 , 90deg, f smooth 0.00 1.69 1.62

FLIP (center)/ corr(y) 0.00 9.49 19.88
GOPRO (center)/ corr(y) 0.00 2.93 3.50

(e) Scaled relative error — equation 5

g. truth MDSSn SKv

S1 , 90deg, f lin 0.00 0.45 0.12
S1 , 45deg, f lin 0.00 0.07 0.06

S1 , 45deg, f smooth 0.00 0.43 0.06
S1 , 90deg, f smooth 0.00 3.19 0.30

FLIP (center)/ corr(y) 0.00 1.13 0.11
GOPRO (center)/ corr(y) 0.00 4.30 0.64

(f) Diameter — equation 1

g. truth MDSSn SKv

S1 , 90deg, f lin 89.76 60.27 122.05
S1 , 45deg, f lin 44.88 31.42 122.05

S1 , 45deg, f smooth 44.88 70.33 122.05
S1 , 90deg, f smooth 89.76 106.25 119.91

FLIP (center)/ corr(y) 23.12 58.04 125.50
GOPRO (center)/ corr(y) 73.41 78.51 128.97

(g) Angular correlation

g. truth MDSSn SKv

S1 , 90deg, f lin 1.0000 0.9985 0.9976
S1 , 45deg, f lin 1.0000 1.0000 1.0000

S1 , 45deg, f smooth 1.0000 0.9996 1.0000
S1 , 90deg, f smooth 1.0000 0.9971 0.9976

FLIP (center)/ corr(y) nan 0.9894 0.9999
GOPRO (center)/ corr(y) nan 0.9847 0.9996
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TABLE B-6: Benchmarks for observability case D (Euclidean case, unobservable scale)

(a) Spearman score — equation6

g. truth MDSRn SKv

R2 , f lin 0.9998 0.9998 0.9998
R2 , f steep 0.9998 0.7704 0.9998

R2 , f smooth 0.9998 0.9180 0.9998

(b) Normalized Spearman score — equation 7

g. truth MDSRn SKv

R2 , f lin 1.0000 1.0000 1.0000
R2 , f steep 1.0000 0.7706 1.0000

R2 , f smooth 1.0000 0.9182 1.0000

(c) Procrustes error — equation 3

g. truth MDSRn SKv

R2 , f lin 0.00 0.46 0.03
R2 , f steep 0.00 0.28 0.03

R2 , f smooth 0.00 0.22 0.03

(d) Relative error — equation 4

g. truth MDSRn SKv

R2 , f lin 0.0000 0.6295 0.0411
R2 , f steep 0.0000 0.3859 0.0411

R2 , f smooth 0.0000 0.3255 0.0411

(e) Scaled relative error — equation 5

g. truth MDSRn SKv

R2 , f lin 0.000 0.003 0.003
R2 , f steep 0.000 0.237 0.003

R2 , f smooth 0.000 0.153 0.003

(f) Diameter — equation 1

g. truth MDSRn SKv

R2 , f lin 2.5302 0.8010 2.6160
R2 , f steep 2.5302 1.1413 2.6160

R2 , f smooth 2.5302 1.1590 2.6160
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Fig. B-2: GOPRO/ corr(y)
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Fig. B-3: OMNI / corr(y)
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Fig. B-5: GOPRO/ f exp
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Fig. B-6: OMNI / f exp
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Fig. B-7: OMNI / corr(c(y))
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Fig. B-8: OMNI / corr( _y))
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Fig. B-9: OMNI / corr(sgn( _y))
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Fig. B-10: Random distribution on S2, 315deg fov, f lin
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Fig. B-11: Random distribution on S2, 315deg fov, f smooth
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Fig. B-12: Random distribution on S2, 315deg fov, f steep
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Fig. B-13: Random distribution on S2, 45deg fov, f smooth
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Fig. B-14: Random distribution on S2, 45deg fov, f lin
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Fig. B-15: Random distribution on S2, 45deg fov, f smooth
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Fig. B-16: Random distribution on S2, 45deg fov, f lin
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Fig. B-17: Random distribution on a square, f smooth
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Fig. B-18: Random distribution on a square, f steep

Ground truth

(a) Points distribution

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

(b) Distance vs. similarity

0 45 90 135 180
distance

0.2

0.0

0.2

0.4

0.6

0.8

1.0

si
m

ila
rit

y

(c) Spearman diagram

0 n¡ 1
order(distance)

0

n¡ 1

or
de

r(
si

m
ila

rit
y)

corr. = -0.9998

SKv

(d) Points distribution

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

(e) Distance vs. similarity

0 45 90 135 180
distance

0.2

0.0

0.2

0.4

0.6

0.8

1.0

si
m

ila
rit

y

(f) Spearman diagram

0 n¡ 1
order(distance)

0

n¡ 1

or
de

r(
si

m
ila

rit
y)

corr. = -0.9998

MDSRn

(g) Points distribution

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

(h) Distance vs. similarity

0 30 60 90
distance

0.2

0.0

0.2

0.4

0.6

0.8

1.0

si
m

ila
rit

y

(i) Spearman diagram

0 n¡ 1
order(distance)

0

n¡ 1

or
de

r(
si

m
ila

rit
y)

corr. = -0.7704

24



Fig. B-19: Random distribution on a square, f lin
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