Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Egocentric and allocentric alignment tasks are affected by otolith input

Tarnutzer, A A; Bockisch, C J; Olasagasti, I; Straumann, D (2012). Egocentric and allocentric alignment tasks are affected by otolith input. Journal of Neurophysiology, 107(11):3095-3106.

Abstract

Gravicentric visual alignments become less precise when the head is roll-tilted relative to gravity, which is most likely due to decreasing otolith sensitivity. To align a luminous line with the perceived gravity vector (gravicentric task) or the perceived body-longitudinal axis (egocentric task), the roll orientation of the line on the retina and the torsional position of the eyes relative to the head must be integrated to obtain the line orientation relative to the head. Whether otolith input contributes to egocentric tasks and whether the modulation of variability is restricted to vision-dependent paradigms is unknown. In nine subjects we compared precision and accuracy of gravicentric and egocentric alignments in various roll positions (upright, 45°, and 75° right-ear down) using a luminous line (visual paradigm) in darkness. Trial-to-trial variability doubled for both egocentric and gravicentric alignments when roll-tilted. Two mechanisms might explain the roll-angle-dependent modulation in egocentric tasks: 1) Modulating variability in estimated ocular torsion, which reflects the roll-dependent precision of otolith signals, affects the precision of estimating the line orientation relative to the head; this hypothesis predicts that variability modulation is restricted to vision-dependent alignments. 2) Estimated body-longitudinal reflects the roll-dependent variability of perceived earth-vertical. Gravicentric cues are thereby integrated regardless of the task's reference frame. To test the two hypotheses the visual paradigm was repeated using a rod instead (haptic paradigm). As with the visual paradigm, precision significantly decreased with increasing head roll for both tasks. These findings propose that the CNS integrates input coded in a gravicentric frame to solve egocentric tasks. In analogy to gravicentric tasks, where trial-to-trial variability is mainly influenced by the properties of the otolith afferents, egocentric tasks may also integrate otolith input. Such a shared mechanism for both paradigms and frames of reference is supported by the significantly correlated trial-to-trial variabilities.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Ophthalmology Clinic
04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Otorhinolaryngology
04 Faculty of Medicine > Neuroscience Center Zurich
04 Faculty of Medicine > Zurich Center for Integrative Human Physiology (ZIHP)
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > General Neuroscience
Life Sciences > Physiology
Language:English
Date:2012
Deposited On:24 Jan 2013 13:58
Last Modified:08 Jan 2025 02:41
Publisher:American Physiological Society
ISSN:0022-3077
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1152/jn.00724.2010
PubMed ID:22442575

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
22 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 24 Jan 2013
0 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications