Abstract
We investigate the algebra generated by the topological Wilson loop operators in WZW models. Wilson loops describe the nontrivial fixed points of the boundary renormalization group flows triggered by Kondo perturbations. Their enveloping algebra therefore encodes all the fixed points which can be reached by sequences of Kondo flows. This algebra is easily described in the case of SU(2), but displays a very rich structure for higher rank groups. In the latter case, its action on known D-branes creates a profusion of new and generically non-rational D-branes. We describe their symmetries and the geometry of their worldvolumes. We briefly explain how to extend these results to coset models.