Header

UZH-Logo

Maintenance Infos

Hsp90 is important for fecundity, longevity, and buffering of cryptic deleterious variation in wild fly populations


Chen, Bing; Wagner, Andreas (2012). Hsp90 is important for fecundity, longevity, and buffering of cryptic deleterious variation in wild fly populations. BMC Evolutionary Biology, 12:25.

Abstract

BACKGROUND: In the laboratory, the Drosophila melanogaster heat shock protein Hsp90 can buffer the phenotypic effects of genetic variation. Laboratory experiments either manipulate Hsp90 activity pharmacologically, or they induce mutations with strong effects in the gene Hsp83, the single-copy fly gene encoding Hsp90. It is unknown whether observations from such laboratory experiments are relevant in the wild. RESULTS: We here study naturally occurring mutations in Hsp83, and their effects on fitness and phenotypic buffering in flies derived from wild populations. We examined more than 4500 flies from 42 Drosophila populations distributed world-wide for insertions or deletions of mobile DNA in or near the Hsp83 gene. The insertions we observed occur at low population frequencies, and reduce Hsp83 gene expression. In competition experiments, mutant flies performed much more poorly than wild-type flies. Mutant flies were also significantly less fecund and shorter-lived than wild-type flies, as well as less well buffered against cryptic deleterious variation, as we show through inbreeding experiments. Specifically, in Hsp83 mutant flies female fecundity dropped to much lower levels after inbreeding than in wild-type flies. At even slightly elevated temperatures, inbred mutant Hsp83 populations went extinct, whereas inbred wild-type populations persisted. CONCLUSIONS: Our work shows that Hsp90, a regulator of the stress response and of signaling, helps buffer deleterious variation in fruit flies derived from wild population, and that its buffering role becomes even more important under heat stress.

Abstract

BACKGROUND: In the laboratory, the Drosophila melanogaster heat shock protein Hsp90 can buffer the phenotypic effects of genetic variation. Laboratory experiments either manipulate Hsp90 activity pharmacologically, or they induce mutations with strong effects in the gene Hsp83, the single-copy fly gene encoding Hsp90. It is unknown whether observations from such laboratory experiments are relevant in the wild. RESULTS: We here study naturally occurring mutations in Hsp83, and their effects on fitness and phenotypic buffering in flies derived from wild populations. We examined more than 4500 flies from 42 Drosophila populations distributed world-wide for insertions or deletions of mobile DNA in or near the Hsp83 gene. The insertions we observed occur at low population frequencies, and reduce Hsp83 gene expression. In competition experiments, mutant flies performed much more poorly than wild-type flies. Mutant flies were also significantly less fecund and shorter-lived than wild-type flies, as well as less well buffered against cryptic deleterious variation, as we show through inbreeding experiments. Specifically, in Hsp83 mutant flies female fecundity dropped to much lower levels after inbreeding than in wild-type flies. At even slightly elevated temperatures, inbred mutant Hsp83 populations went extinct, whereas inbred wild-type populations persisted. CONCLUSIONS: Our work shows that Hsp90, a regulator of the stress response and of signaling, helps buffer deleterious variation in fruit flies derived from wild population, and that its buffering role becomes even more important under heat stress.

Statistics

Citations

Dimensions.ai Metrics
48 citations in Web of Science®
52 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

108 downloads since deposited on 11 Feb 2013
49 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Language:English
Date:2012
Deposited On:11 Feb 2013 12:00
Last Modified:23 Jan 2022 23:39
Publisher:BioMed Central
ISSN:1471-2148
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/1471-2148-12-25
PubMed ID:22369091
  • Content: Published Version
  • Licence: Creative Commons: Attribution 2.0 Generic (CC BY 2.0)