Header

UZH-Logo

Maintenance Infos

Superessential reactions in metabolic networks


Barve, Aditya; Matias Rodrigues, João Frederico; Wagner, Andreas (2012). Superessential reactions in metabolic networks. Proceedings of the National Academy of Sciences of the United States of America, 109(18):E1121-E1130.

Abstract

The metabolic genotype of an organism can change through loss and acquisition of enzyme-coding genes, while preserving its ability to survive and synthesize biomass in specific environments. This evolutionary plasticity allows pathogens to evolve resistance to antimetabolic drugs by acquiring new metabolic pathways that bypass an enzyme blocked by a drug. We here study quantitatively the extent to which individual metabolic reactions and enzymes can be bypassed. To this end, we use a recently developed computational approach to create large metabolic network ensembles that can synthesize all biomass components in a given environment but contain an otherwise random set of known biochemical reactions. Using this approach, we identify a small connected core of 124 reactions that are absolutely superessential (that is, required in all metabolic networks). Many of these reactions have been experimentally confirmed as essential in different organisms. We also report a superessentiality index for thousands of reactions. This index indicates how easily a reaction can be bypassed. We find that it correlates with the number of sequenced genomes that encode an enzyme for the reaction. Superessentiality can help choose an enzyme as a potential drug target, especially because the index is not highly sensitive to the chemical environment that a pathogen requires. Our work also shows how analyses of large network ensembles can help understand the evolution of complex and robust metabolic networks.

Abstract

The metabolic genotype of an organism can change through loss and acquisition of enzyme-coding genes, while preserving its ability to survive and synthesize biomass in specific environments. This evolutionary plasticity allows pathogens to evolve resistance to antimetabolic drugs by acquiring new metabolic pathways that bypass an enzyme blocked by a drug. We here study quantitatively the extent to which individual metabolic reactions and enzymes can be bypassed. To this end, we use a recently developed computational approach to create large metabolic network ensembles that can synthesize all biomass components in a given environment but contain an otherwise random set of known biochemical reactions. Using this approach, we identify a small connected core of 124 reactions that are absolutely superessential (that is, required in all metabolic networks). Many of these reactions have been experimentally confirmed as essential in different organisms. We also report a superessentiality index for thousands of reactions. This index indicates how easily a reaction can be bypassed. We find that it correlates with the number of sequenced genomes that encode an enzyme for the reaction. Superessentiality can help choose an enzyme as a potential drug target, especially because the index is not highly sensitive to the chemical environment that a pathogen requires. Our work also shows how analyses of large network ensembles can help understand the evolution of complex and robust metabolic networks.

Statistics

Citations

Dimensions.ai Metrics
38 citations in Web of Science®
38 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 11 Feb 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Health Sciences > Multidisciplinary
Language:English
Date:16 April 2012
Deposited On:11 Feb 2013 12:07
Last Modified:23 Jan 2022 23:39
Publisher:National Academy of Sciences
ISSN:0027-8424
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1073/pnas.1113065109
PubMed ID:22509034