Header

UZH-Logo

Maintenance Infos

Genome-wide transcription analysis of Escherichia coli in response to extremely low-frequency magnetic fields


Huwiler, Simona G; Beyer, Christian; Fröhlich, Jürg; Hennecke, Hauke; Egli, Thomas; Schürmann, David; Rehrauer, Hubert; Fischer, Hans-Martin (2012). Genome-wide transcription analysis of Escherichia coli in response to extremely low-frequency magnetic fields. Bioelectromagnetics, 33(6):488-496.

Abstract

The widespread use of electricity raises the question of whether or not 50 Hz (power line frequency in Europe) magnetic fields (MFs) affect organisms. We investigated the transcription of Escherichia coli K-12 MG1655 in response to extremely low-frequency (ELF) MFs. Fields generated by three signal types (sinusoidal continuous, sinusoidal intermittent, and power line intermittent; all at 50 Hz, 1 mT) were applied and gene expression was monitored at the transcript level using an Affymetrix whole-genome microarray. Bacterial cells were grown continuously in a chemostat (dilution rate D = 0.4 h(-1)) fed with glucose-limited minimal medium and exposed to 50 Hz MFs with a homogenous flux density of 1 mT. For all three types of MFs investigated, neither bacterial growth (determined using optical density) nor culturable counts were affected. Likewise, no statistically significant change (fold-change > 2, P ≤ 0.01) in the expression of 4,358 genes and 714 intergenic regions represented on the gene chip was detected after MF exposure for 2.5 h (1.4 generations) or 15 h (8.7 generations). Moreover, short-term exposure (8 min) to the sinusoidal continuous and power line intermittent signal neither affected bacterial growth nor showed evidence for reliable changes in transcription. In conclusion, our experiments did not indicate that the different tested MFs (50 Hz, 1 mT) affected the transcription of E. coli.

Abstract

The widespread use of electricity raises the question of whether or not 50 Hz (power line frequency in Europe) magnetic fields (MFs) affect organisms. We investigated the transcription of Escherichia coli K-12 MG1655 in response to extremely low-frequency (ELF) MFs. Fields generated by three signal types (sinusoidal continuous, sinusoidal intermittent, and power line intermittent; all at 50 Hz, 1 mT) were applied and gene expression was monitored at the transcript level using an Affymetrix whole-genome microarray. Bacterial cells were grown continuously in a chemostat (dilution rate D = 0.4 h(-1)) fed with glucose-limited minimal medium and exposed to 50 Hz MFs with a homogenous flux density of 1 mT. For all three types of MFs investigated, neither bacterial growth (determined using optical density) nor culturable counts were affected. Likewise, no statistically significant change (fold-change > 2, P ≤ 0.01) in the expression of 4,358 genes and 714 intergenic regions represented on the gene chip was detected after MF exposure for 2.5 h (1.4 generations) or 15 h (8.7 generations). Moreover, short-term exposure (8 min) to the sinusoidal continuous and power line intermittent signal neither affected bacterial growth nor showed evidence for reliable changes in transcription. In conclusion, our experiments did not indicate that the different tested MFs (50 Hz, 1 mT) affected the transcription of E. coli.

Statistics

Citations

Dimensions.ai Metrics
11 citations in Web of Science®
12 citations in Scopus®
11 citations in Microsoft Academic
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Uncontrolled Keywords:Biophysics, Physiology, Radiology Nuclear Medicine and imaging, General Medicine
Language:English
Date:2012
Deposited On:11 Feb 2013 12:39
Last Modified:18 Aug 2018 08:01
Publisher:Wiley-Blackwell
ISSN:0197-8462
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/bem.21709
PubMed ID:22331529

Download

Full text not available from this repository.
View at publisher

Get full-text in a library