Abstract
This study presents a high-throughput proteomic analysis of phosphopeptides from Fusarium graminearum strain DAOM 233423 grown in vitro without nutritional limitation. Using a combination of strong cation exchange (SCX) and immobilized metal affinity chromatography (IMAC) followed by LC-MS, we identified 2902 putative phosphopeptides with homologous matches to 1496 different proteins. Functional classification of the annotated protein set revealed that phosphopeptides from nuclear proteins with ATP-binding function were the most abundant. There are indications that phosphorylation sites from well-characterized phosphoproteins representing diverse biological processes are conserved in F. graminearum: sequences of three phosphopeptides from known phosphoproteins (transcription elongation factor 1β, acidic ribosomal proteins, and glycogen synthase) revealed phosphorylation site conservation.