Header

UZH-Logo

Maintenance Infos

Higgs low-energy theorem (and its corrections) in composite models


Gillioz, M; Gröber, R; Grojean, C; Mühlleitner, M; Salvioni, E (2012). Higgs low-energy theorem (and its corrections) in composite models. Journal of High Energy Physics, 2012(10):1-46.

Abstract

The Higgs low-energy theorem gives a simple and elegant way to estimate the couplings of the Higgs boson to massless gluons and photons induced by loops of heavy particles. We extend this theorem to take into account possible nonlinear Higgs interactions as well as new states resulting from a strong dynamics at the origin of the breaking of the electroweak symmetry. We show that, while it approximates with an accuracy of order a few percents single Higgs production, it receives corrections of order 50% for double Higgs production. A full one-loop computation of the gg → hh cross section is explicitly performed in MCHM5, the minimal composite Higgs model based on the SO(5)/SO(4) coset with the Standard Model fermions embedded into the fundamental representation of SO(5). In particular we take into account the contributions of all fermionic resonances, which give sizeable (negative) corrections to the result obtained considering only the Higgs nonlinearities. Constraints from electroweak precision and flavor data on the top partners are analyzed in detail, as well as direct searches at the LHC for these new fermions called to play a crucial role in the electroweak symmetry breaking dynamics.

Abstract

The Higgs low-energy theorem gives a simple and elegant way to estimate the couplings of the Higgs boson to massless gluons and photons induced by loops of heavy particles. We extend this theorem to take into account possible nonlinear Higgs interactions as well as new states resulting from a strong dynamics at the origin of the breaking of the electroweak symmetry. We show that, while it approximates with an accuracy of order a few percents single Higgs production, it receives corrections of order 50% for double Higgs production. A full one-loop computation of the gg → hh cross section is explicitly performed in MCHM5, the minimal composite Higgs model based on the SO(5)/SO(4) coset with the Standard Model fermions embedded into the fundamental representation of SO(5). In particular we take into account the contributions of all fermionic resonances, which give sizeable (negative) corrections to the result obtained considering only the Higgs nonlinearities. Constraints from electroweak precision and flavor data on the top partners are analyzed in detail, as well as direct searches at the LHC for these new fermions called to play a crucial role in the electroweak symmetry breaking dynamics.

Statistics

Citations

Dimensions.ai Metrics

103 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

120 downloads since deposited on 13 Feb 2013
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Nuclear and High Energy Physics
Language:English
Date:October 2012
Deposited On:13 Feb 2013 13:35
Last Modified:23 Jan 2022 23:41
Publisher:Springer
ISSN:1029-8479
Additional Information:The original publication is available at www.springerlink.com
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1007/JHEP10(2012)004
  • Content: Accepted Version