Header

UZH-Logo

Maintenance Infos

Evaluation of immunohistochemical markers to detect the genotoxic mode of action of fine and ultrafine dusts in rat lungs


Rittinghausen, S; Bellmann, B; Creutzenberg, O; Ernst, H; Kolling, A; Mangelsdorf, I; Kellner, R; Beneke, S; Ziemann, C (2013). Evaluation of immunohistochemical markers to detect the genotoxic mode of action of fine and ultrafine dusts in rat lungs. Toxicology, 303C:177-186.

Abstract

Data on local genotoxicity after particle exposure are crucial to resolve mechanistic aspects such as the impact of chronic inflammation, types of DNA damage, and their role in lung carcinogenesis. We established immunohistochemical methods to quantify the DNA damage markers poly(ADP-ribose) (PAR), phosphorylated H2AX (γ-H2AX), 8-hydroxyguanosine (8-OH-dG), and 8-oxoguanine DNA glycosylase (OGG1) in paraffin-embedded tissue from particle-exposed rats. The study was based on lungs from a subchronic study that was part of an already published carcinogenicity study where rats had been intratracheally instilled with saline, quartz DQ12, amorphous silica (Aerosil(®) 150), or carbon black (Printex(®) 90) at monthly intervals for 3 months. Lung sections were stained immunohistochemically and markers were quantified in alveolar lining cells. Local genotoxicity was then correlated with already defined endpoints, i.e. mean inflammation score, bronchoalveolar lavage parameters, and carcinogenicity. Genotoxicity was most pronounced in quartz DQ12-treated rats, where all genotoxicity markers gave statistically significant positive results, indicating considerable genotoxic stress such as occurrence of DNA double-strand breaks (DSB), and oxidative damage with subsequent repair activity. Genotoxicity was less pronounced for Printex(®) 90, but significant increases in γ-H2AX- and 8-OH-dG-positive nuclei and OGG1-positive cytoplasm were nevertheless detected. In contrast, Aerosil(®) 150 significantly enhanced only 8-OH-dG-positive nuclei and oxidative damage-related repair activity (OGG1) in cytoplasm. In the present study, γ-H2AX was the most sensitive genotoxicity marker, differentiating best between the three types of particles. The mean number of 8-OH-dG-positive nuclei, however, correlated best with the mean inflammation score at the same time point. This methodological approach enables integration of local genotoxicity testing in subchronic inhalation studies and makes immunohistochemical detection, in particular of γ-H2AX and 8-hydroxyguanine, a very promising approach for local genotoxicity testing in lungs, with prognostic value for the long-term outcome of particle exposure.

Abstract

Data on local genotoxicity after particle exposure are crucial to resolve mechanistic aspects such as the impact of chronic inflammation, types of DNA damage, and their role in lung carcinogenesis. We established immunohistochemical methods to quantify the DNA damage markers poly(ADP-ribose) (PAR), phosphorylated H2AX (γ-H2AX), 8-hydroxyguanosine (8-OH-dG), and 8-oxoguanine DNA glycosylase (OGG1) in paraffin-embedded tissue from particle-exposed rats. The study was based on lungs from a subchronic study that was part of an already published carcinogenicity study where rats had been intratracheally instilled with saline, quartz DQ12, amorphous silica (Aerosil(®) 150), or carbon black (Printex(®) 90) at monthly intervals for 3 months. Lung sections were stained immunohistochemically and markers were quantified in alveolar lining cells. Local genotoxicity was then correlated with already defined endpoints, i.e. mean inflammation score, bronchoalveolar lavage parameters, and carcinogenicity. Genotoxicity was most pronounced in quartz DQ12-treated rats, where all genotoxicity markers gave statistically significant positive results, indicating considerable genotoxic stress such as occurrence of DNA double-strand breaks (DSB), and oxidative damage with subsequent repair activity. Genotoxicity was less pronounced for Printex(®) 90, but significant increases in γ-H2AX- and 8-OH-dG-positive nuclei and OGG1-positive cytoplasm were nevertheless detected. In contrast, Aerosil(®) 150 significantly enhanced only 8-OH-dG-positive nuclei and oxidative damage-related repair activity (OGG1) in cytoplasm. In the present study, γ-H2AX was the most sensitive genotoxicity marker, differentiating best between the three types of particles. The mean number of 8-OH-dG-positive nuclei, however, correlated best with the mean inflammation score at the same time point. This methodological approach enables integration of local genotoxicity testing in subchronic inhalation studies and makes immunohistochemical detection, in particular of γ-H2AX and 8-hydroxyguanine, a very promising approach for local genotoxicity testing in lungs, with prognostic value for the long-term outcome of particle exposure.

Statistics

Citations

Dimensions.ai Metrics
21 citations in Web of Science®
24 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 28 Jan 2013
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > Toxicology
Language:English
Date:2013
Deposited On:28 Jan 2013 08:49
Last Modified:23 Jan 2022 23:44
Publisher:Elsevier
ISSN:0300-483X
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.tox.2012.11.007
PubMed ID:23178243