Abstract
Medical resonance imaging (MRI) conventionally relies on spatially linear gradient fields for image encoding. However, in practice various sources of nonlinear fields can perturb the encoding process and give rise to artifacts unless they are suitably addressed at the reconstruction level. Accounting for field perturbations that are neither linear in space nor constant over time, i.e., dynamic higher-order fields, is particularly challenging. It was previously shown to be feasible with conjugate-gradient iteration. However, so far this approach has been relatively slow due to the need to carry out explicit matrix-vector multiplications in each cycle. In this work, it is proposed to accelerate higher-order reconstruction by expanding the encoding matrix such that fast Fourier transform can be employed for more efficient matrix-vector computation. The underlying principle is to represent the perturbing terms as sums of separable functions of space and time. Compact representations with this property are found by singular-vector analysis of the perturbing matrix. Guidelines for balancing the accuracy and speed of the resulting algorithm are derived by error propagation analysis. The proposed technique is demonstrated for the case of higher-order field perturbations due to eddy currents caused by diffusion weighting. In this example, image reconstruction was accelerated by two orders of magnitude.