Header

UZH-Logo

Maintenance Infos

Improving the acquisition of nociceptive evoked potentials without causing more pain


Kramer, John L K; Haefeli, Jenny; Jutzeler, Catherine R; Steeves, John D; Curt, Armin (2013). Improving the acquisition of nociceptive evoked potentials without causing more pain. Pain, 154(2):235-241.

Abstract

Following nociceptive heat or laser stimulation, an early contralateral and later vertex potential can be recorded. Although more indicative of the nociceptive input, the acquisition of the contralateral N1 after contact heat stimulation (contact heat-evoked potentials [CHEPs]) remains difficult. An advantage of contact heat is that the baseline skin temperature preceding peak stimulation can be controlled. Increasing the baseline temperature may represent a novel strategy to improve the acquisition of CHEPs without resulting in more subjective pain to stimulation. A study was undertaken in 23 healthy subjects to examine the effects of increasing the baseline temperature but not the perceived intensity of contact heat stimulation. A combined standard averaging and single-trial analysis was performed to disclose how changes in averaged waveforms related to latency jitter and individual trial amplitudes. By increasing the baseline temperature, the acquisition of N1 was improved among subjects with a low-amplitude response (greater than -4μV) following 35°C baseline temperature stimulation (P<.05). Based on standard averaging, N2/P2 amplitudes were also significantly increased with and without an accompanying change in the rating of perceived pain when the baseline temperature was increased (P<.05). In contrast, automated single-trial averaging revealed no significant difference in N2 amplitude when the baseline temperature was increased to 42°C and the peak temperature reduced. These findings suggest that 2 mechanisms underlie the improved acquisition of CHEPs: increased synchronization of afferent volley, yielding larger-amplitude evoked potentials in response to the same rating of intensity; and reduced inter-trial variability.

Abstract

Following nociceptive heat or laser stimulation, an early contralateral and later vertex potential can be recorded. Although more indicative of the nociceptive input, the acquisition of the contralateral N1 after contact heat stimulation (contact heat-evoked potentials [CHEPs]) remains difficult. An advantage of contact heat is that the baseline skin temperature preceding peak stimulation can be controlled. Increasing the baseline temperature may represent a novel strategy to improve the acquisition of CHEPs without resulting in more subjective pain to stimulation. A study was undertaken in 23 healthy subjects to examine the effects of increasing the baseline temperature but not the perceived intensity of contact heat stimulation. A combined standard averaging and single-trial analysis was performed to disclose how changes in averaged waveforms related to latency jitter and individual trial amplitudes. By increasing the baseline temperature, the acquisition of N1 was improved among subjects with a low-amplitude response (greater than -4μV) following 35°C baseline temperature stimulation (P<.05). Based on standard averaging, N2/P2 amplitudes were also significantly increased with and without an accompanying change in the rating of perceived pain when the baseline temperature was increased (P<.05). In contrast, automated single-trial averaging revealed no significant difference in N2 amplitude when the baseline temperature was increased to 42°C and the peak temperature reduced. These findings suggest that 2 mechanisms underlie the improved acquisition of CHEPs: increased synchronization of afferent volley, yielding larger-amplitude evoked potentials in response to the same rating of intensity; and reduced inter-trial variability.

Statistics

Citations

Dimensions.ai Metrics
27 citations in Web of Science®
31 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Neurology
Health Sciences > Neurology (clinical)
Health Sciences > Anesthesiology and Pain Medicine
Language:English
Date:2013
Deposited On:31 Jan 2013 09:30
Last Modified:23 Jan 2022 23:46
Publisher:Elsevier
ISSN:0304-3959
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.pain.2012.10.027
PubMed ID:23218174
Full text not available from this repository.