Header

UZH-Logo

Maintenance Infos

Dietary abrasiveness is associated with variability of microwear and dental surface texture in rabbits


Schulz, Ellen; Piotrowski, Vanessa; Clauss, Marcus; Mau, Marcus; Merceron, Gildas; Kaiser, Thomas M (2013). Dietary abrasiveness is associated with variability of microwear and dental surface texture in rabbits. PLoS ONE, 8(2):e56167.

Abstract

Dental microwear and 3D surface texture analyses are useful in reconstructing herbivore diets, with scratches usually interpreted as indicators of grass dominated diets and pits as indicators of browse. We conducted feeding experiments with four groups of rabbits (Oryctolagus cuniculus) each fed a different uniform, pelleted diet (lucerne, lucerne & oats, grass & oats, grass). The lowest silica content was measured in the lucerne and the highest in the grass diet. After 25 weeks of exposure to the diets, dental castings were made of the rabbit’s lower molars. Occlusal surfaces were then investigated using dental microwear and 3D areal surface texture analysis. In terms of traditional microwear, we found our hypothesis supported, as the grass group showed a high proportion of (long) ‘‘scratches’’ and the lucerne group a high proportion of ‘‘pits’’. Regardless of the uniform diets, variability of microwear and surface textures was higher when silica content was low. A high variability in microwear and texture analysis thus need not represent dietary diversity, but can also be related to a uniform, low-abrasion diet. The uniformity or variability of microwear/texture analysis results thus might represent varying degrees of abrasion and attrition rather than a variety of diet items per se.

Abstract

Dental microwear and 3D surface texture analyses are useful in reconstructing herbivore diets, with scratches usually interpreted as indicators of grass dominated diets and pits as indicators of browse. We conducted feeding experiments with four groups of rabbits (Oryctolagus cuniculus) each fed a different uniform, pelleted diet (lucerne, lucerne & oats, grass & oats, grass). The lowest silica content was measured in the lucerne and the highest in the grass diet. After 25 weeks of exposure to the diets, dental castings were made of the rabbit’s lower molars. Occlusal surfaces were then investigated using dental microwear and 3D areal surface texture analysis. In terms of traditional microwear, we found our hypothesis supported, as the grass group showed a high proportion of (long) ‘‘scratches’’ and the lucerne group a high proportion of ‘‘pits’’. Regardless of the uniform diets, variability of microwear and surface textures was higher when silica content was low. A high variability in microwear and texture analysis thus need not represent dietary diversity, but can also be related to a uniform, low-abrasion diet. The uniformity or variability of microwear/texture analysis results thus might represent varying degrees of abrasion and attrition rather than a variety of diet items per se.

Statistics

Citations

Dimensions.ai Metrics
112 citations in Web of Science®
118 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

169 downloads since deposited on 22 Feb 2013
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Small Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Scopus Subject Areas:Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > General Agricultural and Biological Sciences
Health Sciences > Multidisciplinary
Language:English
Date:2013
Deposited On:22 Feb 2013 11:03
Last Modified:23 Jan 2022 23:59
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0056167
PubMed ID:23405263
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)
  • Content: Published Version
  • Description: Supplement