Header

UZH-Logo

Maintenance Infos

Ossification heterochrony in the mammalian postcranial skeleton and the marsupial-placental dichotomy


Weisbecker, V; Goswami, A; Wroe, S; Sánchez-Villagra, M R (2008). Ossification heterochrony in the mammalian postcranial skeleton and the marsupial-placental dichotomy. Evolution, 62(8):2027-2041.

Abstract

Postcranial ossification sequences in 24 therian mammals and three outgroup taxa were obtained using clear staining and computed tomography to test the hypothesis that the marsupial forelimb is developmentally accelerated, and to assess patterns of therian postcranial ossification. Sequence rank variation of individual bones, phylogenetic analysis, and algorithm-based heterochrony optimization using event pairs were employed. Phylogenetic analysis only recovers Marsupialia, Australidelphia, and Eulipotyphla. Little heterochrony is found within marsupials and placentals. However, heterochrony was observed between marsupials and placentals, relating to late ossification in hind limb long bones and early ossification of the anterior axial skeleton. Also, ossification rank position of marsupial forelimb and shoulder girdle elements is more conservative than that of placentals; in placentals the hind limb area is more conservative. The differing ossification patterns in marsupials can be explained with a combination of muscular strain and energy allocation constraints, both resulting from the requirement of active movement of the altricial marsupial neonates toward the teat. Peramelemorphs, which are comparatively passive at birth and include species with relatively derived forelimbs, differ little from other marsupials in ossification sequence. This suggests that ossification heterochrony in marsupials is not directly related to diversity constraints on the marsupial forelimb and shoulder girdle

Abstract

Postcranial ossification sequences in 24 therian mammals and three outgroup taxa were obtained using clear staining and computed tomography to test the hypothesis that the marsupial forelimb is developmentally accelerated, and to assess patterns of therian postcranial ossification. Sequence rank variation of individual bones, phylogenetic analysis, and algorithm-based heterochrony optimization using event pairs were employed. Phylogenetic analysis only recovers Marsupialia, Australidelphia, and Eulipotyphla. Little heterochrony is found within marsupials and placentals. However, heterochrony was observed between marsupials and placentals, relating to late ossification in hind limb long bones and early ossification of the anterior axial skeleton. Also, ossification rank position of marsupial forelimb and shoulder girdle elements is more conservative than that of placentals; in placentals the hind limb area is more conservative. The differing ossification patterns in marsupials can be explained with a combination of muscular strain and energy allocation constraints, both resulting from the requirement of active movement of the altricial marsupial neonates toward the teat. Peramelemorphs, which are comparatively passive at birth and include species with relatively derived forelimbs, differ little from other marsupials in ossification sequence. This suggests that ossification heterochrony in marsupials is not directly related to diversity constraints on the marsupial forelimb and shoulder girdle

Statistics

Citations

Dimensions.ai Metrics
106 citations in Web of Science®
111 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 15 Dec 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Paleontological Institute and Museum
Dewey Decimal Classification:560 Fossils & prehistoric life
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Life Sciences > Genetics
Life Sciences > General Agricultural and Biological Sciences
Language:English
Date:16 May 2008
Deposited On:15 Dec 2008 10:56
Last Modified:01 Dec 2023 02:48
Publisher:Wiley-Blackwell
ISSN:0014-3820
OA Status:Closed
Publisher DOI:https://doi.org/10.1111/j.1558-5646.2008.00424.x