BACKGROUND: Studies on the association of farm environments with asthma and atopy have repeatedly observed a protective effect of farming. However, no single specific farm-related exposure explaining this protective farm effect has consistently been identified. OBJECTIVE: We sought to determine distinct farm exposures that account for the protective effect of farming on asthma and atopy. METHODS: In rural regions of Austria, Germany, and Switzerland, 79,888 school-aged children answered a recruiting questionnaire (phase I). In phase II a stratified random subsample of 8,419 children answered a detailed questionnaire on farming environment. Blood samples and specific IgE levels were available for 7,682 of these children. A broad asthma definition was used, comprising symptoms, diagnosis, or treatment ever. RESULTS: Children living on a farm were at significantly reduced risk of asthma (adjusted odds ratio [aOR], 0.68; 95% CI, 0.59-0.78; P< .001), hay fever (aOR, 0.43; 95% CI, 0.36-0.52; P< .001), atopic dermatitis (aOR, 0.80; 95% CI, 0.69-0.93; P= .004), and atopic sensitization (aOR, 0.54; 95% CI, 0.48-0.61; P< .001) compared with nonfarm children. Whereas this overall farm effect could be explained by specific exposures to cows, straw, and farm milk for asthma and exposure to fodder storage rooms and manure for atopic dermatitis, the farm effect on hay fever and atopic sensitization could not be completely explained by the questionnaire items themselves or their diversity. CONCLUSION: A specific type of farm typical for traditional farming (ie, with cows and cultivation) was protective against asthma, hay fever, and atopy. However, whereas the farm effect on asthma could be explained by specific farm characteristics, there is a link still missing for hay fever and atopy.
Abstract
BACKGROUND: Studies on the association of farm environments with asthma and atopy have repeatedly observed a protective effect of farming. However, no single specific farm-related exposure explaining this protective farm effect has consistently been identified. OBJECTIVE: We sought to determine distinct farm exposures that account for the protective effect of farming on asthma and atopy. METHODS: In rural regions of Austria, Germany, and Switzerland, 79,888 school-aged children answered a recruiting questionnaire (phase I). In phase II a stratified random subsample of 8,419 children answered a detailed questionnaire on farming environment. Blood samples and specific IgE levels were available for 7,682 of these children. A broad asthma definition was used, comprising symptoms, diagnosis, or treatment ever. RESULTS: Children living on a farm were at significantly reduced risk of asthma (adjusted odds ratio [aOR], 0.68; 95% CI, 0.59-0.78; P< .001), hay fever (aOR, 0.43; 95% CI, 0.36-0.52; P< .001), atopic dermatitis (aOR, 0.80; 95% CI, 0.69-0.93; P= .004), and atopic sensitization (aOR, 0.54; 95% CI, 0.48-0.61; P< .001) compared with nonfarm children. Whereas this overall farm effect could be explained by specific exposures to cows, straw, and farm milk for asthma and exposure to fodder storage rooms and manure for atopic dermatitis, the farm effect on hay fever and atopic sensitization could not be completely explained by the questionnaire items themselves or their diversity. CONCLUSION: A specific type of farm typical for traditional farming (ie, with cows and cultivation) was protective against asthma, hay fever, and atopy. However, whereas the farm effect on asthma could be explained by specific farm characteristics, there is a link still missing for hay fever and atopy.
TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.