Header

UZH-Logo

Maintenance Infos

Epigenetic inheritance of disease and disease risk


Bohacek, Johannes; Mansuy, Isabelle M (2013). Epigenetic inheritance of disease and disease risk. Biological Psychiatry, 38(1):220-236.

Abstract

Epigenetic marks in an organism can be altered by environmental factors throughout life. Although changes in the epigenetic code can be positive, some are associated with severe diseases, in particular, cancer and neuropsychiatric disorders. Recent evidence has indicated that certain epigenetic marks can be inherited, and reshape developmental and cellular features over generations. This review examines the challenging possibility that epigenetic changes induced by environmental factors can contribute to some of the inheritance of disease and disease risk. This concept has immense implications for the understanding of biological functions and disease etiology, and provides potential novel strategies for diagnosis and treatment. Examples of epigenetic inheritance relevant to human disease, such as the detrimental effects of traumatic stress or drug/toxic exposure on brain functions, are reviewed. Different possible routes of transmission of epigenetic information involving the germline or germline-independent transfer are discussed, and different mechanisms for the maintenance and transmission of epigenetic information like chromatin remodeling and small noncoding RNAs are considered. Future research directions and remaining major challenges in this field are also outlined. Finally, the adaptive value of epigenetic inheritance, and the cost and benefit of allowing acquired epigenetic marks to persist across generations is critically evaluated.

Abstract

Epigenetic marks in an organism can be altered by environmental factors throughout life. Although changes in the epigenetic code can be positive, some are associated with severe diseases, in particular, cancer and neuropsychiatric disorders. Recent evidence has indicated that certain epigenetic marks can be inherited, and reshape developmental and cellular features over generations. This review examines the challenging possibility that epigenetic changes induced by environmental factors can contribute to some of the inheritance of disease and disease risk. This concept has immense implications for the understanding of biological functions and disease etiology, and provides potential novel strategies for diagnosis and treatment. Examples of epigenetic inheritance relevant to human disease, such as the detrimental effects of traumatic stress or drug/toxic exposure on brain functions, are reviewed. Different possible routes of transmission of epigenetic information involving the germline or germline-independent transfer are discussed, and different mechanisms for the maintenance and transmission of epigenetic information like chromatin remodeling and small noncoding RNAs are considered. Future research directions and remaining major challenges in this field are also outlined. Finally, the adaptive value of epigenetic inheritance, and the cost and benefit of allowing acquired epigenetic marks to persist across generations is critically evaluated.

Statistics

Citations

Dimensions.ai Metrics
108 citations in Web of Science®
123 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Brain Research Institute
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Pharmacology
Health Sciences > Psychiatry and Mental Health
Language:English
Date:2013
Deposited On:21 Feb 2013 15:55
Last Modified:24 Jan 2022 00:06
Publisher:Elsevier
ISSN:0006-3223
OA Status:Closed
Publisher DOI:https://doi.org/10.1038/npp.2012.110
PubMed ID:22781843
Full text not available from this repository.