Header

UZH-Logo

Maintenance Infos

Accelerated cell death 2 suppresses mitochondrial oxidative bursts and modulates cell death in Arabidopsis


Pattanayak, Gopal K; Venkataramani, Sujatha; Hortensteiner, Stefan; Kunz, Lukas; Christ, Bastien; Moulin, Michael; Smith, Alison G; Okamoto, Yukihiro; Tamiaki, Hitoshi; Sugishima, Masakazu; Greenberg, Jean T (2012). Accelerated cell death 2 suppresses mitochondrial oxidative bursts and modulates cell death in Arabidopsis. The Plant Journal, 69(4):589-600.

Abstract

The Arabidopsis ACCELERATED CELL DEATH 2 (ACD2) protein protects cells from programmed cell death (PCD) caused by endogenous porphyrin-related molecules like red chlorophyll catabolite or exogenous protoporphyrin IX. We previously found that during bacterial infection, ACD2, a chlorophyll breakdown enzyme, localizes to both chloroplasts and mitochondria in leaves. Additionally, acd2 cells show mitochondrial dysfunction. In plants with acd2 and ACD2 (+) sectors, ACD2 functions cell autonomously, implicating a pro-death ACD2 substrate as being cell non-autonomous in promoting the spread of PCD. ACD2 targeted solely to mitochondria can reduce the accumulation of an ACD2 substrate that originates in chloroplasts, indicating that ACD2 substrate molecules are likely to be mobile within cells. Two different light-dependent reactive oxygen bursts in mitochondria play prominent and causal roles in the acd2 PCD phenotype. Finally, ACD2 can complement acd2 when targeted to mitochondria or chloroplasts, respectively, as long as it is catalytically active: the ability to bind substrate is not sufficient for ACD2 to function in vitro or in vivo. Together, the data suggest that ACD2 localizes dynamically during infection to protect cells from pro-death mobile substrate molecules, some of which may originate in chloroplasts, but have major effects on mitochondria.

Abstract

The Arabidopsis ACCELERATED CELL DEATH 2 (ACD2) protein protects cells from programmed cell death (PCD) caused by endogenous porphyrin-related molecules like red chlorophyll catabolite or exogenous protoporphyrin IX. We previously found that during bacterial infection, ACD2, a chlorophyll breakdown enzyme, localizes to both chloroplasts and mitochondria in leaves. Additionally, acd2 cells show mitochondrial dysfunction. In plants with acd2 and ACD2 (+) sectors, ACD2 functions cell autonomously, implicating a pro-death ACD2 substrate as being cell non-autonomous in promoting the spread of PCD. ACD2 targeted solely to mitochondria can reduce the accumulation of an ACD2 substrate that originates in chloroplasts, indicating that ACD2 substrate molecules are likely to be mobile within cells. Two different light-dependent reactive oxygen bursts in mitochondria play prominent and causal roles in the acd2 PCD phenotype. Finally, ACD2 can complement acd2 when targeted to mitochondria or chloroplasts, respectively, as long as it is catalytically active: the ability to bind substrate is not sufficient for ACD2 to function in vitro or in vivo. Together, the data suggest that ACD2 localizes dynamically during infection to protect cells from pro-death mobile substrate molecules, some of which may originate in chloroplasts, but have major effects on mitochondria.

Statistics

Citations

Dimensions.ai Metrics
39 citations in Web of Science®
41 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 25 Feb 2013
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Scopus Subject Areas:Life Sciences > Genetics
Life Sciences > Plant Science
Life Sciences > Cell Biology
Language:English
Date:2012
Deposited On:25 Feb 2013 08:10
Last Modified:24 Jan 2022 00:09
Publisher:Wiley-Blackwell
ISSN:0960-7412
OA Status:Closed
Publisher DOI:https://doi.org/10.1111/j.1365-313X.2011.04814.x
PubMed ID:21988537