Abstract
We present an approach for the automatic reconstruction of neurons from 3D stacks of electron microscopy sections. The core of our system is a set of possible assignments, each of which proposes with some cost a link between neuron regions in consecutive sections. These can model the continuation, branching, and end of neurons. The costs are trainable on positive assignment samples. An optimal and consistent set of assignments is found for the whole volume at once by solving an integer linear program. This set of assignments determines both the segmentation into neuron regions and the correspondence between such regions in neighboring slices. For each picked assignment, a confidence value helps to prioritize decisions to be reviewed by a human expert. We evaluate the performance of our method on an annotated volume of neural tissue and compare to the current state of the art [26]. Our method is superior in accuracy and can be trained using a small number of samples. The observed inference times are linear with about 2 milliseconds per neuron and section.