Header

UZH-Logo

Maintenance Infos

Bonding of glass ceramic and indirect composite to non-aged and aged resin composite


Gresnigt, Marco; Özcan, Mutlu; Muis, Maarten; Kalk, Warner (2012). Bonding of glass ceramic and indirect composite to non-aged and aged resin composite. Journal of Adhesive Dentistry, 14(1):59-68.

Abstract

PURPOSE: Since adhesion of the restorative materials to pre-polymerized or aged resin composites presents a challenge to the clinicians, existing restorations are often removed and remade prior to cementation of fixed dental prostheses (FDPs). This study evaluated bond strength of non-aged and aged resin composite to an indirect resin composite and pressed glass ceramic using two resin cements.
MATERIALS AND METHODS: Disk-shaped specimens (diameter: 3.5, thickness: 3 mm) (N = 160) produced from a microhybrid resin composite (Quadrant Anterior Shine) were randomly divided into eight groups. While half of the specimens were kept dry at 37°C for 24 h, the other half was aged by means of thermocycling (6000 times, 5°C to 55°C). The non-aged and aged resin composites were bonded to a highly filled indirect composite (Estenia) and a pressed glass ceramic (IPS Empress II) using either a photopolymerizing (Variolink Veneer) or a dual-polymerizing (Panavia F2.0) resin cement. While cementation surfaces of both the direct and indirect composite materials were silica coated (30 µm SiO2, CoJet-Sand) and silanized (ESPE-Sil), ceramic surfaces were conditioned with hydrofluoric acid (20 s), neutralized, and silanized prior to cementation. All specimens were cemented under a load of 750 g. Shear force was applied to the adhesive interface in a universal testing machine (1 mm/min). Failure types of the specimens were identified after debonding.
RESULTS: Significant effects of aging (p < 0.05), restorative material (p < 0.05), and cement type (p < 0.05) were observed on the bond strength (3-way ANOVA). Interaction terms were also significant (p < 0.05) (Tukey's test). After aging, in terms of bond strength, indirect composite and pressed glass ceramic in combination with both cements showed no significant difference (p > 0.05). Both indirect composite (24.3 ± 5.1 MPa) and glass ceramic in combination with Variolink (22 ± 9 MPa) showed the highest results on non-aged composites, but were not significantly different from one another (p > 0.05). On the aged composites, indirect composite and glass ceramic showed no significant difference in bond strength within each material group (p > 0.05), with both Panavia (17.2 ± 6 and 15 ± 5.5 MPa, respectively) and Variolink (19 ± 8, 12.8 ± 5.3 MPa, respectively), but in all groups, glass ceramic-Variolink on aged composite revealed the lowest results (12.8 ± 5.3 MPa). Among all groups, predominantly cohesive failures were observed in the indirect resin composite substrate (79 out of 80) as opposed to the ceramic (18 out of 80) (p < 0.05) (Chi square).
CONCLUSION: Regardless of the resin cement type, considering the bond values and the failure types, the adhesion quality of indirect composite cemented to non-aged and aged resin composite was superior with both cements compared to that of pressed glass ceramic.

Abstract

PURPOSE: Since adhesion of the restorative materials to pre-polymerized or aged resin composites presents a challenge to the clinicians, existing restorations are often removed and remade prior to cementation of fixed dental prostheses (FDPs). This study evaluated bond strength of non-aged and aged resin composite to an indirect resin composite and pressed glass ceramic using two resin cements.
MATERIALS AND METHODS: Disk-shaped specimens (diameter: 3.5, thickness: 3 mm) (N = 160) produced from a microhybrid resin composite (Quadrant Anterior Shine) were randomly divided into eight groups. While half of the specimens were kept dry at 37°C for 24 h, the other half was aged by means of thermocycling (6000 times, 5°C to 55°C). The non-aged and aged resin composites were bonded to a highly filled indirect composite (Estenia) and a pressed glass ceramic (IPS Empress II) using either a photopolymerizing (Variolink Veneer) or a dual-polymerizing (Panavia F2.0) resin cement. While cementation surfaces of both the direct and indirect composite materials were silica coated (30 µm SiO2, CoJet-Sand) and silanized (ESPE-Sil), ceramic surfaces were conditioned with hydrofluoric acid (20 s), neutralized, and silanized prior to cementation. All specimens were cemented under a load of 750 g. Shear force was applied to the adhesive interface in a universal testing machine (1 mm/min). Failure types of the specimens were identified after debonding.
RESULTS: Significant effects of aging (p < 0.05), restorative material (p < 0.05), and cement type (p < 0.05) were observed on the bond strength (3-way ANOVA). Interaction terms were also significant (p < 0.05) (Tukey's test). After aging, in terms of bond strength, indirect composite and pressed glass ceramic in combination with both cements showed no significant difference (p > 0.05). Both indirect composite (24.3 ± 5.1 MPa) and glass ceramic in combination with Variolink (22 ± 9 MPa) showed the highest results on non-aged composites, but were not significantly different from one another (p > 0.05). On the aged composites, indirect composite and glass ceramic showed no significant difference in bond strength within each material group (p > 0.05), with both Panavia (17.2 ± 6 and 15 ± 5.5 MPa, respectively) and Variolink (19 ± 8, 12.8 ± 5.3 MPa, respectively), but in all groups, glass ceramic-Variolink on aged composite revealed the lowest results (12.8 ± 5.3 MPa). Among all groups, predominantly cohesive failures were observed in the indirect resin composite substrate (79 out of 80) as opposed to the ceramic (18 out of 80) (p < 0.05) (Chi square).
CONCLUSION: Regardless of the resin cement type, considering the bond values and the failure types, the adhesion quality of indirect composite cemented to non-aged and aged resin composite was superior with both cements compared to that of pressed glass ceramic.

Statistics

Citations

Dimensions.ai Metrics
11 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 26 Feb 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic of Reconstructive Dentistry
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Orthodontics
Health Sciences > Oral Surgery
Health Sciences > Periodontics
Language:English
Date:2012
Deposited On:26 Feb 2013 16:46
Last Modified:09 Nov 2023 02:43
Publisher:Quintessence Publishing
ISSN:1461-5185
OA Status:Closed
Publisher DOI:https://doi.org/10.3290/j.jad.a21418
PubMed ID:21594236