Header

UZH-Logo

Maintenance Infos

Divergent and narrower climatic niches characterize polyploid species of European primroses in Primula sect. Aleuritia


Theodoridis, Spyros; Randin, Christophe; Broennimann, Olivier; Patsiou, Theofania; Conti, Elena (2013). Divergent and narrower climatic niches characterize polyploid species of European primroses in Primula sect. Aleuritia. Journal of Biogeography, 40(7):1278-1289.

Abstract

Aim
It is hypothesized that the ecological niches of polyploids should be both distinct and broader than those of diploids – characteristics that might have allowed the successful colonization of open habitats by polyploids during the Pleistocene glacial cycles. Here, we test these hypotheses by quantifying and comparing the ecological niches and niche breadths of a group of European primroses.
Location
Europe.
Methods
We gathered georeferenced data of four related species in Primula sect. Aleuritia at different ploidy levels (diploid, tetraploid, hexaploid and octoploid) and used seven bioclimatic variables to quantify niche overlap between species by applying a series of univariate and multivariate analyses combined with modelling techniques. We also employed permutation-based tests to evaluate niche similarity between the four species. Niche breadth for each species was evaluated both in the multivariate environmental space and in geographical space.
Results
The four species differed significantly from each other in mono-dimensional comparisons of climatological variables and occupied distinct habitats in the multi-dimensional environmental space. The majority of the permutation-based tests either indicated that the four species differed significantly in their habitat preferences and ecological niches or did not support significant niche similarity. Furthermore, our results revealed narrower niche breadths and geographical ranges in species of P. sect. Aleuritia at higher ploidy levels.
Main conclusions
The detected ecological differentiation between the four species of P. sect. Aleuritia at different ploidy levels is consistent with the hypothesis that polyploids occupy distinct ecological niches that differ from those of their diploid relative. Contrary to expectations, we find that polyploid species of P. sect. Aleuritia occupy narrower environmental and geographical spaces than their diploid relative. These results on the ecological niches of closely related polyploid and diploid species highlight factors that potentially contribute to the evolution and distribution of polyploid species.

Abstract

Aim
It is hypothesized that the ecological niches of polyploids should be both distinct and broader than those of diploids – characteristics that might have allowed the successful colonization of open habitats by polyploids during the Pleistocene glacial cycles. Here, we test these hypotheses by quantifying and comparing the ecological niches and niche breadths of a group of European primroses.
Location
Europe.
Methods
We gathered georeferenced data of four related species in Primula sect. Aleuritia at different ploidy levels (diploid, tetraploid, hexaploid and octoploid) and used seven bioclimatic variables to quantify niche overlap between species by applying a series of univariate and multivariate analyses combined with modelling techniques. We also employed permutation-based tests to evaluate niche similarity between the four species. Niche breadth for each species was evaluated both in the multivariate environmental space and in geographical space.
Results
The four species differed significantly from each other in mono-dimensional comparisons of climatological variables and occupied distinct habitats in the multi-dimensional environmental space. The majority of the permutation-based tests either indicated that the four species differed significantly in their habitat preferences and ecological niches or did not support significant niche similarity. Furthermore, our results revealed narrower niche breadths and geographical ranges in species of P. sect. Aleuritia at higher ploidy levels.
Main conclusions
The detected ecological differentiation between the four species of P. sect. Aleuritia at different ploidy levels is consistent with the hypothesis that polyploids occupy distinct ecological niches that differ from those of their diploid relative. Contrary to expectations, we find that polyploid species of P. sect. Aleuritia occupy narrower environmental and geographical spaces than their diploid relative. These results on the ecological niches of closely related polyploid and diploid species highlight factors that potentially contribute to the evolution and distribution of polyploid species.

Statistics

Citations

Dimensions.ai Metrics
74 citations in Web of Science®
73 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 28 Mar 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Systematic and Evolutionary Botany
Dewey Decimal Classification:580 Plants (Botany)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Physical Sciences > Ecology
Language:English
Date:2013
Deposited On:28 Mar 2013 08:13
Last Modified:24 Jan 2022 00:40
Publisher:Wiley-Blackwell
ISSN:0305-0270
OA Status:Closed
Publisher DOI:https://doi.org/10.1111/jbi.12085