Abstract
A homogeneous mass-fragmentation, as it has been defined in [6], describes the evolution of the collection of masses of fragments of an object which breaks down into pieces as time passes. Here, we show that this model can be enriched by considering also the types of the fragments, where a type may represent, for instance, a geometrical shape, and can take finitely many values. In this setting, the dynamics of a randomly tagged fragment play a crucial role in the analysis of the fragmentation. They are determined by a Markov additive process whose distribution depends explicitly on the characteristics of the fragmentation. As applications, we make explicit the connection with multitype branching random walks, and obtain multitype analogs of the pathwise central limit theorem and large deviation estimates for the empirical distribution of fragments.