Header

UZH-Logo

Maintenance Infos

Massively parallel measurements of molecular interaction kinetics on a microfluidic platform


Geertz, Marcel; Shore, David; Maerkl, Sebastian J (2012). Massively parallel measurements of molecular interaction kinetics on a microfluidic platform. Proceedings of the National Academy of Sciences of the United States of America, 109(41):16540-16545.

Abstract

Quantitative biology requires quantitative data. No high-throughput technologies exist capable of obtaining several hundred independent kinetic binding measurements in a single experiment. We present an integrated microfluidic device (k-MITOMI) for the simultaneous kinetic characterization of 768 biomolecular interactions. We applied k-MITOMI to the kinetic analysis of transcription factor (TF)—DNA interactions, measuring the detailed kinetic landscapes of the mouse TF Zif268, and the yeast TFs Tye7p, Yox1p, and Tbf1p. We demonstrated the integrated nature of k-MITOMI by expressing, purifying, and characterizing 27 additional yeast transcription factors in parallel on a single device. Overall, we obtained 2,388 association and dissociation curves of 223 unique molecular interactions with equilibrium dissociation constants ranging from 2×10^(-6)M to 2×10^(-9)M, and dissociation rate constants of approximately 6s^(-1) to 8.5×10^(-3)s^(-1). Association rate constants were uniform across 3 TF families, ranging from 3.7x10^6 M^(-1)s^(-1) to 9.6x10^7 M^(-1)s^(-1), and are well below the diffusion limit. We expect that k-MITOMI will contribute to our quantitative understanding of biological systems and accelerate the development and characterization of engineered systems.

Abstract

Quantitative biology requires quantitative data. No high-throughput technologies exist capable of obtaining several hundred independent kinetic binding measurements in a single experiment. We present an integrated microfluidic device (k-MITOMI) for the simultaneous kinetic characterization of 768 biomolecular interactions. We applied k-MITOMI to the kinetic analysis of transcription factor (TF)—DNA interactions, measuring the detailed kinetic landscapes of the mouse TF Zif268, and the yeast TFs Tye7p, Yox1p, and Tbf1p. We demonstrated the integrated nature of k-MITOMI by expressing, purifying, and characterizing 27 additional yeast transcription factors in parallel on a single device. Overall, we obtained 2,388 association and dissociation curves of 223 unique molecular interactions with equilibrium dissociation constants ranging from 2×10^(-6)M to 2×10^(-9)M, and dissociation rate constants of approximately 6s^(-1) to 8.5×10^(-3)s^(-1). Association rate constants were uniform across 3 TF families, ranging from 3.7x10^6 M^(-1)s^(-1) to 9.6x10^7 M^(-1)s^(-1), and are well below the diffusion limit. We expect that k-MITOMI will contribute to our quantitative understanding of biological systems and accelerate the development and characterization of engineered systems.

Statistics

Citations

Dimensions.ai Metrics
80 citations in Web of Science®
81 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

146 downloads since deposited on 22 Jun 2013
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:Special Collections > SystemsX.ch
Special Collections > SystemsX.ch > Research, Technology and Development Projects > DynamiX
Special Collections > SystemsX.ch > Research, Technology and Development Projects
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Health Sciences > Multidisciplinary
Language:English
Date:September 2012
Deposited On:22 Jun 2013 15:22
Last Modified:24 Jan 2022 01:06
Publisher:National Academy of Sciences
ISSN:0027-8424
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1073/pnas.1206011109