Navigation auf zora.uzh.ch

Search

ZORA (Zurich Open Repository and Archive)

Beyond co-localization: inferring spatial interactions between sub-cellular structures from microscopy images

Helmuth, Jo A; Paul, Grégory; Sbalzarini, Ivo F (2010). Beyond co-localization: inferring spatial interactions between sub-cellular structures from microscopy images. BMC Bioinformatics, 11(1):372.

Abstract

Background: Sub-cellular structures interact in numerous direct and indirect ways in order to fulfill cellular functions. While direct molecular interactions crucially depend on spatial proximity, other interactions typically result in spatial correlations between the interacting structures. Such correlations are the target of microscopy-based co-localization analysis, which can provide hints of potential interactions. Two complementary approaches to co-localization analysis can be distinguished: intensity correlation methods capitalize on pattern discovery, whereas object-based methods emphasize detection power.
Results: We first reinvestigate the classical co-localization measure in the context of spatial point pattern analysis. This allows us to unravel the set of implicit assumptions inherent to this measure and to identify potential confounding factors commonly ignored. We generalize object-based co-localization analysis to a statistical framework involving spatial point processes. In this framework, interactions are understood as position co-dependencies in the observed localization patterns. The framework is based on a model of effective pairwise interaction potentials and the specification of a null hypothesis for the expected pattern in the absence of interaction. Inferred interaction potentials thus reflect all significant effects that are not explained by the null hypothesis. Our model enables the use of a wealth of well-known statistical methods for analyzing experimental data, as demonstrated on synthetic data and in a case study considering virus entry into live cells. We show that the classical co-localization measure typically under-exploits the information contained in our data.
Conclusions: We establish a connection between co-localization and spatial interaction of sub-cellular structures by formulating the object-based interaction analysis problem in a spatial statistics framework based on nearest-neighbor distance distributions. We provide generic procedures for inferring interaction strengths and quantifying their relative statistical significance from sets of discrete objects as provided by image analysis methods. Within our framework, the interaction potential can either refer to a phenomenological or a mechanistic model of a physico-chemical interaction process. This increased flexibility in designing and testing different hypothetical interaction models can be used to quantify the parameters of a specific interaction model or may catalyze the discovery of functional relations.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:Special Collections > SystemsX.ch
Special Collections > SystemsX.ch > Research, Technology and Development Projects > LipidX
Special Collections > SystemsX.ch > Research, Technology and Development Projects > WingX
Special Collections > SystemsX.ch > Research, Technology and Development Projects
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > Structural Biology
Life Sciences > Biochemistry
Life Sciences > Molecular Biology
Physical Sciences > Computer Science Applications
Physical Sciences > Applied Mathematics
Language:English
Date:2010
Deposited On:05 Jul 2013 11:25
Last Modified:09 Sep 2024 01:38
Publisher:BioMed Central
ISSN:1471-2105
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/1471-2105-11-372
PubMed ID:20609242
Download PDF  'Beyond co-localization: inferring spatial interactions between sub-cellular structures from microscopy images'.
Preview
  • Content: Accepted Version
Download PDF  'Beyond co-localization: inferring spatial interactions between sub-cellular structures from microscopy images'.
Preview
  • Content: Published Version
  • Licence: Creative Commons: Attribution 2.0 Generic (CC BY 2.0)

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
62 citations in Web of Science®
69 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

118 downloads since deposited on 05 Jul 2013
6 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications