Header

UZH-Logo

Maintenance Infos

Epithelial cell adhesion molecule-targeted drug delivery for cancer therapy


Simon, Manuel; Stefan, Nikolas; Plückthun, Andreas; Zangemeister-Wittke, Uwe (2013). Epithelial cell adhesion molecule-targeted drug delivery for cancer therapy. Expert Opinion on Drug Delivery, 10(4):451-468.

Abstract

INTRODUCTION: The epithelial cell adhesion molecule (EpCAM) is abundantly expressed in epithelial tumors, on cancer stem cells and circulating tumor cells. Together with its role in oncogenic signaling, this has sparked interest in its potential for tumor targeting with antibodies and drug conjugates for safe and effective cancer therapy. Recent advances in protein engineering, linker design and drug formulations have provided a multitude of EpCAM-targeting anticancer agents, several of them with good perspectives for clinical development.
AREAS COVERED: This article reviews the biological, therapeutic and technical aspects of EpCAM-targeted drug delivery for cancer therapy. The authors discuss seminal findings, which distinguish EpCAM as a target with oncogenic function and abundant expression in epithelial tumors. Moreover, recent trends in engineering improved anti-EpCAM antibodies, binding proteins that are not derived from immunoglobulins and drug conjugates derived from them are highlighted and their therapeutic potential based on reported preclinical and clinical data, originality of design and perspectives are critically assessed.
EXPERT OPINION: EpCAM has shown promise for safe and efficient targeting of solid tumors using antibodies, alternative binding molecules and novel drug conjugates. Among the myriad of EpCAM-targeting drug delivery systems investigated so far, several could demonstrate therapeutic benefit, other formulations engineered to become tailor-made missiles are on the brink.

Abstract

INTRODUCTION: The epithelial cell adhesion molecule (EpCAM) is abundantly expressed in epithelial tumors, on cancer stem cells and circulating tumor cells. Together with its role in oncogenic signaling, this has sparked interest in its potential for tumor targeting with antibodies and drug conjugates for safe and effective cancer therapy. Recent advances in protein engineering, linker design and drug formulations have provided a multitude of EpCAM-targeting anticancer agents, several of them with good perspectives for clinical development.
AREAS COVERED: This article reviews the biological, therapeutic and technical aspects of EpCAM-targeted drug delivery for cancer therapy. The authors discuss seminal findings, which distinguish EpCAM as a target with oncogenic function and abundant expression in epithelial tumors. Moreover, recent trends in engineering improved anti-EpCAM antibodies, binding proteins that are not derived from immunoglobulins and drug conjugates derived from them are highlighted and their therapeutic potential based on reported preclinical and clinical data, originality of design and perspectives are critically assessed.
EXPERT OPINION: EpCAM has shown promise for safe and efficient targeting of solid tumors using antibodies, alternative binding molecules and novel drug conjugates. Among the myriad of EpCAM-targeting drug delivery systems investigated so far, several could demonstrate therapeutic benefit, other formulations engineered to become tailor-made missiles are on the brink.

Statistics

Citations

Dimensions.ai Metrics
71 citations in Web of Science®
75 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 12 Aug 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > Pharmaceutical Science
Language:English
Date:2013
Deposited On:12 Aug 2013 14:12
Last Modified:10 Dec 2023 02:38
Publisher:Informa Healthcare
ISSN:1742-5247
OA Status:Closed
Publisher DOI:https://doi.org/10.1517/17425247.2013.759938
PubMed ID:23316711